YES
by ttt2 (version ttt2 1.15)
The rewrite relation of the following TRS is considered.
| B(x0) | → | W(M(M(M(V(x0))))) |
| M(x0) | → | x0 |
| M(V(c(x0))) | → | V(Xc(x0)) |
| M(V(a(x0))) | → | V(Xa(x0)) |
| M(V(d(x0))) | → | V(Xd(x0)) |
| M(V(b(x0))) | → | V(Xb(x0)) |
| Xc(c(x0)) | → | c(Xc(x0)) |
| Xc(a(x0)) | → | a(Xc(x0)) |
| Xc(d(x0)) | → | d(Xc(x0)) |
| Xc(b(x0)) | → | b(Xc(x0)) |
| Xa(c(x0)) | → | c(Xa(x0)) |
| Xa(a(x0)) | → | a(Xa(x0)) |
| Xa(d(x0)) | → | d(Xa(x0)) |
| Xa(b(x0)) | → | b(Xa(x0)) |
| Xd(c(x0)) | → | c(Xd(x0)) |
| Xd(a(x0)) | → | a(Xd(x0)) |
| Xd(d(x0)) | → | d(Xd(x0)) |
| Xd(b(x0)) | → | b(Xd(x0)) |
| Xb(c(x0)) | → | c(Xb(x0)) |
| Xb(a(x0)) | → | a(Xb(x0)) |
| Xb(d(x0)) | → | d(Xb(x0)) |
| Xb(b(x0)) | → | b(Xb(x0)) |
| Xc(E(x0)) | → | c(E(x0)) |
| Xa(E(x0)) | → | a(E(x0)) |
| Xd(E(x0)) | → | d(E(x0)) |
| Xb(E(x0)) | → | b(E(x0)) |
| W(V(x0)) | → | R(L(x0)) |
| L(c(x0)) | → | Yc(L(x0)) |
| L(a(x0)) | → | Ya(L(x0)) |
| L(d(x0)) | → | Yd(L(x0)) |
| L(b(x0)) | → | Yb(L(x0)) |
| L(c(c(c(a(x0))))) | → | D(d(d(x0))) |
| L(d(b(x0))) | → | D(c(c(x0))) |
| L(c(x0)) | → | D(a(a(a(a(x0))))) |
| L(d(x0)) | → | D(b(b(b(b(x0))))) |
| L(b(d(x0))) | → | D(c(c(x0))) |
| L(a(c(c(c(x0))))) | → | D(d(d(x0))) |
| Yc(D(x0)) | → | D(c(x0)) |
| Ya(D(x0)) | → | D(a(x0)) |
| Yd(D(x0)) | → | D(d(x0)) |
| Yb(D(x0)) | → | D(b(x0)) |
| R(D(x0)) | → | B(x0) |
| [Yb(x1)] | = | 3 · x1 + -∞ |
| [c(x1)] | = | 8 · x1 + -∞ |
| [Yc(x1)] | = | 8 · x1 + -∞ |
| [d(x1)] | = | 13 · x1 + -∞ |
| [V(x1)] | = | 0 · x1 + -∞ |
| [W(x1)] | = | 8 · x1 + -∞ |
| [Ya(x1)] | = | 2 · x1 + -∞ |
| [D(x1)] | = | 0 · x1 + -∞ |
| [Yd(x1)] | = | 13 · x1 + -∞ |
| [Xc(x1)] | = | 8 · x1 + -∞ |
| [b(x1)] | = | 3 · x1 + -∞ |
| [B(x1)] | = | 8 · x1 + -∞ |
| [Xa(x1)] | = | 2 · x1 + -∞ |
| [R(x1)] | = | 8 · x1 + -∞ |
| [E(x1)] | = | 0 · x1 + -∞ |
| [Xb(x1)] | = | 3 · x1 + -∞ |
| [Xd(x1)] | = | 13 · x1 + -∞ |
| [L(x1)] | = | 0 · x1 + -∞ |
| [a(x1)] | = | 2 · x1 + -∞ |
| [M(x1)] | = | 0 · x1 + -∞ |
| B(x0) | → | W(M(M(M(V(x0))))) |
| M(x0) | → | x0 |
| M(V(c(x0))) | → | V(Xc(x0)) |
| M(V(a(x0))) | → | V(Xa(x0)) |
| M(V(d(x0))) | → | V(Xd(x0)) |
| M(V(b(x0))) | → | V(Xb(x0)) |
| Xc(c(x0)) | → | c(Xc(x0)) |
| Xc(a(x0)) | → | a(Xc(x0)) |
| Xc(d(x0)) | → | d(Xc(x0)) |
| Xc(b(x0)) | → | b(Xc(x0)) |
| Xa(c(x0)) | → | c(Xa(x0)) |
| Xa(a(x0)) | → | a(Xa(x0)) |
| Xa(d(x0)) | → | d(Xa(x0)) |
| Xa(b(x0)) | → | b(Xa(x0)) |
| Xd(c(x0)) | → | c(Xd(x0)) |
| Xd(a(x0)) | → | a(Xd(x0)) |
| Xd(d(x0)) | → | d(Xd(x0)) |
| Xd(b(x0)) | → | b(Xd(x0)) |
| Xb(c(x0)) | → | c(Xb(x0)) |
| Xb(a(x0)) | → | a(Xb(x0)) |
| Xb(d(x0)) | → | d(Xb(x0)) |
| Xb(b(x0)) | → | b(Xb(x0)) |
| Xc(E(x0)) | → | c(E(x0)) |
| Xa(E(x0)) | → | a(E(x0)) |
| Xd(E(x0)) | → | d(E(x0)) |
| Xb(E(x0)) | → | b(E(x0)) |
| W(V(x0)) | → | R(L(x0)) |
| L(c(x0)) | → | Yc(L(x0)) |
| L(a(x0)) | → | Ya(L(x0)) |
| L(d(x0)) | → | Yd(L(x0)) |
| L(b(x0)) | → | Yb(L(x0)) |
| L(c(c(c(a(x0))))) | → | D(d(d(x0))) |
| L(d(b(x0))) | → | D(c(c(x0))) |
| L(c(x0)) | → | D(a(a(a(a(x0))))) |
| L(b(d(x0))) | → | D(c(c(x0))) |
| L(a(c(c(c(x0))))) | → | D(d(d(x0))) |
| Yc(D(x0)) | → | D(c(x0)) |
| Ya(D(x0)) | → | D(a(x0)) |
| Yd(D(x0)) | → | D(d(x0)) |
| Yb(D(x0)) | → | D(b(x0)) |
| R(D(x0)) | → | B(x0) |
| [Yb(x1)] | = | 4 · x1 + -∞ |
| [c(x1)] | = | 6 · x1 + -∞ |
| [Yc(x1)] | = | 6 · x1 + -∞ |
| [d(x1)] | = | 8 · x1 + -∞ |
| [V(x1)] | = | 0 · x1 + -∞ |
| [W(x1)] | = | 0 · x1 + -∞ |
| [Ya(x1)] | = | 1 · x1 + -∞ |
| [D(x1)] | = | 0 · x1 + -∞ |
| [Yd(x1)] | = | 8 · x1 + -∞ |
| [Xc(x1)] | = | 6 · x1 + -∞ |
| [b(x1)] | = | 4 · x1 + -∞ |
| [B(x1)] | = | 0 · x1 + -∞ |
| [Xa(x1)] | = | 1 · x1 + -∞ |
| [R(x1)] | = | 0 · x1 + -∞ |
| [E(x1)] | = | 0 · x1 + -∞ |
| [Xb(x1)] | = | 4 · x1 + -∞ |
| [Xd(x1)] | = | 8 · x1 + -∞ |
| [L(x1)] | = | 0 · x1 + -∞ |
| [a(x1)] | = | 1 · x1 + -∞ |
| [M(x1)] | = | 0 · x1 + -∞ |
| B(x0) | → | W(M(M(M(V(x0))))) |
| M(x0) | → | x0 |
| M(V(c(x0))) | → | V(Xc(x0)) |
| M(V(a(x0))) | → | V(Xa(x0)) |
| M(V(d(x0))) | → | V(Xd(x0)) |
| M(V(b(x0))) | → | V(Xb(x0)) |
| Xc(c(x0)) | → | c(Xc(x0)) |
| Xc(a(x0)) | → | a(Xc(x0)) |
| Xc(d(x0)) | → | d(Xc(x0)) |
| Xc(b(x0)) | → | b(Xc(x0)) |
| Xa(c(x0)) | → | c(Xa(x0)) |
| Xa(a(x0)) | → | a(Xa(x0)) |
| Xa(d(x0)) | → | d(Xa(x0)) |
| Xa(b(x0)) | → | b(Xa(x0)) |
| Xd(c(x0)) | → | c(Xd(x0)) |
| Xd(a(x0)) | → | a(Xd(x0)) |
| Xd(d(x0)) | → | d(Xd(x0)) |
| Xd(b(x0)) | → | b(Xd(x0)) |
| Xb(c(x0)) | → | c(Xb(x0)) |
| Xb(a(x0)) | → | a(Xb(x0)) |
| Xb(d(x0)) | → | d(Xb(x0)) |
| Xb(b(x0)) | → | b(Xb(x0)) |
| Xc(E(x0)) | → | c(E(x0)) |
| Xa(E(x0)) | → | a(E(x0)) |
| Xd(E(x0)) | → | d(E(x0)) |
| Xb(E(x0)) | → | b(E(x0)) |
| W(V(x0)) | → | R(L(x0)) |
| L(c(x0)) | → | Yc(L(x0)) |
| L(a(x0)) | → | Ya(L(x0)) |
| L(d(x0)) | → | Yd(L(x0)) |
| L(b(x0)) | → | Yb(L(x0)) |
| L(d(b(x0))) | → | D(c(c(x0))) |
| L(b(d(x0))) | → | D(c(c(x0))) |
| Yc(D(x0)) | → | D(c(x0)) |
| Ya(D(x0)) | → | D(a(x0)) |
| Yd(D(x0)) | → | D(d(x0)) |
| Yb(D(x0)) | → | D(b(x0)) |
| R(D(x0)) | → | B(x0) |
| [Yb(x1)] | = | 0 · x1 + -∞ |
| [c(x1)] | = | 0 · x1 + -∞ |
| [Yc(x1)] | = | 0 · x1 + -∞ |
| [d(x1)] | = | 9 · x1 + -∞ |
| [V(x1)] | = | 1 · x1 + -∞ |
| [W(x1)] | = | 7 · x1 + -∞ |
| [Ya(x1)] | = | 0 · x1 + -∞ |
| [D(x1)] | = | 8 · x1 + -∞ |
| [Yd(x1)] | = | 9 · x1 + -∞ |
| [Xc(x1)] | = | 0 · x1 + -∞ |
| [b(x1)] | = | 0 · x1 + -∞ |
| [B(x1)] | = | 8 · x1 + -∞ |
| [Xa(x1)] | = | 0 · x1 + -∞ |
| [R(x1)] | = | 8 · x1 + -∞ |
| [E(x1)] | = | 0 · x1 + -∞ |
| [Xb(x1)] | = | 0 · x1 + -∞ |
| [Xd(x1)] | = | 9 · x1 + -∞ |
| [L(x1)] | = | 0 · x1 + -∞ |
| [a(x1)] | = | 0 · x1 + -∞ |
| [M(x1)] | = | 0 · x1 + -∞ |
| B(x0) | → | W(M(M(M(V(x0))))) |
| M(x0) | → | x0 |
| M(V(c(x0))) | → | V(Xc(x0)) |
| M(V(a(x0))) | → | V(Xa(x0)) |
| M(V(d(x0))) | → | V(Xd(x0)) |
| M(V(b(x0))) | → | V(Xb(x0)) |
| Xc(c(x0)) | → | c(Xc(x0)) |
| Xc(a(x0)) | → | a(Xc(x0)) |
| Xc(d(x0)) | → | d(Xc(x0)) |
| Xc(b(x0)) | → | b(Xc(x0)) |
| Xa(c(x0)) | → | c(Xa(x0)) |
| Xa(a(x0)) | → | a(Xa(x0)) |
| Xa(d(x0)) | → | d(Xa(x0)) |
| Xa(b(x0)) | → | b(Xa(x0)) |
| Xd(c(x0)) | → | c(Xd(x0)) |
| Xd(a(x0)) | → | a(Xd(x0)) |
| Xd(d(x0)) | → | d(Xd(x0)) |
| Xd(b(x0)) | → | b(Xd(x0)) |
| Xb(c(x0)) | → | c(Xb(x0)) |
| Xb(a(x0)) | → | a(Xb(x0)) |
| Xb(d(x0)) | → | d(Xb(x0)) |
| Xb(b(x0)) | → | b(Xb(x0)) |
| Xc(E(x0)) | → | c(E(x0)) |
| Xa(E(x0)) | → | a(E(x0)) |
| Xd(E(x0)) | → | d(E(x0)) |
| Xb(E(x0)) | → | b(E(x0)) |
| W(V(x0)) | → | R(L(x0)) |
| L(c(x0)) | → | Yc(L(x0)) |
| L(a(x0)) | → | Ya(L(x0)) |
| L(d(x0)) | → | Yd(L(x0)) |
| L(b(x0)) | → | Yb(L(x0)) |
| Yc(D(x0)) | → | D(c(x0)) |
| Ya(D(x0)) | → | D(a(x0)) |
| Yd(D(x0)) | → | D(d(x0)) |
| Yb(D(x0)) | → | D(b(x0)) |
| [Yb(x1)] | = | 0 · x1 + -∞ |
| [c(x1)] | = | 0 · x1 + -∞ |
| [Yc(x1)] | = | 0 · x1 + -∞ |
| [d(x1)] | = | 8 · x1 + -∞ |
| [V(x1)] | = | 2 · x1 + -∞ |
| [W(x1)] | = | 0 · x1 + -∞ |
| [Ya(x1)] | = | 8 · x1 + -∞ |
| [D(x1)] | = | 0 · x1 + -∞ |
| [Yd(x1)] | = | 8 · x1 + -∞ |
| [Xc(x1)] | = | 3 · x1 + -∞ |
| [b(x1)] | = | 0 · x1 + -∞ |
| [B(x1)] | = | 11 · x1 + -∞ |
| [Xa(x1)] | = | 8 · x1 + -∞ |
| [R(x1)] | = | 2 · x1 + -∞ |
| [E(x1)] | = | 0 · x1 + -∞ |
| [Xb(x1)] | = | 2 · x1 + -∞ |
| [Xd(x1)] | = | 8 · x1 + -∞ |
| [L(x1)] | = | 0 · x1 + -∞ |
| [a(x1)] | = | 8 · x1 + -∞ |
| [M(x1)] | = | 3 · x1 + -∞ |
| B(x0) | → | W(M(M(M(V(x0))))) |
| M(V(c(x0))) | → | V(Xc(x0)) |
| Xc(c(x0)) | → | c(Xc(x0)) |
| Xc(a(x0)) | → | a(Xc(x0)) |
| Xc(d(x0)) | → | d(Xc(x0)) |
| Xc(b(x0)) | → | b(Xc(x0)) |
| Xa(c(x0)) | → | c(Xa(x0)) |
| Xa(a(x0)) | → | a(Xa(x0)) |
| Xa(d(x0)) | → | d(Xa(x0)) |
| Xa(b(x0)) | → | b(Xa(x0)) |
| Xd(c(x0)) | → | c(Xd(x0)) |
| Xd(a(x0)) | → | a(Xd(x0)) |
| Xd(d(x0)) | → | d(Xd(x0)) |
| Xd(b(x0)) | → | b(Xd(x0)) |
| Xb(c(x0)) | → | c(Xb(x0)) |
| Xb(a(x0)) | → | a(Xb(x0)) |
| Xb(d(x0)) | → | d(Xb(x0)) |
| Xb(b(x0)) | → | b(Xb(x0)) |
| Xa(E(x0)) | → | a(E(x0)) |
| Xd(E(x0)) | → | d(E(x0)) |
| W(V(x0)) | → | R(L(x0)) |
| L(c(x0)) | → | Yc(L(x0)) |
| L(a(x0)) | → | Ya(L(x0)) |
| L(d(x0)) | → | Yd(L(x0)) |
| L(b(x0)) | → | Yb(L(x0)) |
| Yc(D(x0)) | → | D(c(x0)) |
| Ya(D(x0)) | → | D(a(x0)) |
| Yd(D(x0)) | → | D(d(x0)) |
| Yb(D(x0)) | → | D(b(x0)) |
| [Yb(x1)] | = | 0 · x1 + -∞ |
| [c(x1)] | = | 2 · x1 + -∞ |
| [Yc(x1)] | = | 2 · x1 + -∞ |
| [d(x1)] | = | 1 · x1 + -∞ |
| [V(x1)] | = | 0 · x1 + -∞ |
| [W(x1)] | = | 0 · x1 + -∞ |
| [Ya(x1)] | = | 4 · x1 + -∞ |
| [D(x1)] | = | 0 · x1 + -∞ |
| [Yd(x1)] | = | 1 · x1 + -∞ |
| [Xc(x1)] | = | 0 · x1 + -∞ |
| [b(x1)] | = | 0 · x1 + -∞ |
| [B(x1)] | = | 0 · x1 + -∞ |
| [Xa(x1)] | = | 10 · x1 + -∞ |
| [R(x1)] | = | 0 · x1 + -∞ |
| [E(x1)] | = | 13 · x1 + -∞ |
| [Xb(x1)] | = | 1 · x1 + -∞ |
| [Xd(x1)] | = | 1 · x1 + -∞ |
| [L(x1)] | = | 0 · x1 + -∞ |
| [a(x1)] | = | 4 · x1 + -∞ |
| [M(x1)] | = | 0 · x1 + -∞ |
| B(x0) | → | W(M(M(M(V(x0))))) |
| Xc(c(x0)) | → | c(Xc(x0)) |
| Xc(a(x0)) | → | a(Xc(x0)) |
| Xc(d(x0)) | → | d(Xc(x0)) |
| Xc(b(x0)) | → | b(Xc(x0)) |
| Xa(c(x0)) | → | c(Xa(x0)) |
| Xa(a(x0)) | → | a(Xa(x0)) |
| Xa(d(x0)) | → | d(Xa(x0)) |
| Xa(b(x0)) | → | b(Xa(x0)) |
| Xd(c(x0)) | → | c(Xd(x0)) |
| Xd(a(x0)) | → | a(Xd(x0)) |
| Xd(d(x0)) | → | d(Xd(x0)) |
| Xd(b(x0)) | → | b(Xd(x0)) |
| Xb(c(x0)) | → | c(Xb(x0)) |
| Xb(a(x0)) | → | a(Xb(x0)) |
| Xb(d(x0)) | → | d(Xb(x0)) |
| Xb(b(x0)) | → | b(Xb(x0)) |
| Xd(E(x0)) | → | d(E(x0)) |
| W(V(x0)) | → | R(L(x0)) |
| L(c(x0)) | → | Yc(L(x0)) |
| L(a(x0)) | → | Ya(L(x0)) |
| L(d(x0)) | → | Yd(L(x0)) |
| L(b(x0)) | → | Yb(L(x0)) |
| Yc(D(x0)) | → | D(c(x0)) |
| Ya(D(x0)) | → | D(a(x0)) |
| Yd(D(x0)) | → | D(d(x0)) |
| Yb(D(x0)) | → | D(b(x0)) |
final states:
{41, 39, 37, 35, 34, 33, 32, 31, 29, 27, 26, 25, 24, 22, 21, 20, 19, 17, 16, 15, 14, 12, 11, 10, 9, 7, 1}
transitions:
| 33 | → | 30 |
| 25 | → | 23 |
| 32 | → | 30 |
| 10 | → | 8 |
| 15 | → | 13 |
| 9 | → | 8 |
| 34 | → | 30 |
| 20 | → | 18 |
| 31 | → | 30 |
| 26 | → | 23 |
| 21 | → | 18 |
| 22 | → | 23 |
| 11 | → | 8 |
| 16 | → | 13 |
| 14 | → | 13 |
| 12 | → | 13 |
| 7 | → | 8 |
| 17 | → | 18 |
| 24 | → | 23 |
| 19 | → | 18 |
| 27 | → | 18 |
| Xb0(2) | → | 23 |
| c0(23) | → | 22 |
| c0(13) | → | 12 |
| c0(2) | → | 36 |
| c0(8) | → | 7 |
| c0(18) | → | 17 |
| D0(36) | → | 35 |
| D0(40) | → | 39 |
| D0(38) | → | 37 |
| D0(42) | → | 41 |
| Xa0(2) | → | 13 |
| a0(8) | → | 9 |
| a0(2) | → | 38 |
| a0(13) | → | 14 |
| a0(18) | → | 19 |
| a0(23) | → | 24 |
| Yd0(30) | → | 33 |
| Xd0(2) | → | 18 |
| R0(30) | → | 29 |
| W0(6) | → | 1 |
| d0(28) | → | 27 |
| d0(8) | → | 10 |
| d0(2) | → | 40 |
| d0(18) | → | 20 |
| d0(13) | → | 15 |
| d0(23) | → | 25 |
| M0(5) | → | 6 |
| M0(4) | → | 5 |
| M0(3) | → | 4 |
| V0(2) | → | 3 |
| E0(2) | → | 28 |
| f200 | → | 2 |
| Ya0(30) | → | 32 |
| Yc0(30) | → | 31 |
| Xc0(2) | → | 8 |
| Yb0(30) | → | 34 |
| L0(2) | → | 30 |
| b0(18) | → | 21 |
| b0(23) | → | 26 |
| b0(2) | → | 42 |
| b0(8) | → | 11 |
| b0(13) | → | 16 |