YES Termination Proof

Termination Proof

by ttt2 (version ttt2 1.15)

Input

The rewrite relation of the following TRS is considered.

B(x0) W(M(M(M(V(x0)))))
M(x0) x0
M(V(a(x0))) V(Xa(x0))
M(V(b(x0))) V(Xb(x0))
M(V(c(x0))) V(Xc(x0))
Xa(a(x0)) a(Xa(x0))
Xa(b(x0)) b(Xa(x0))
Xa(c(x0)) c(Xa(x0))
Xb(a(x0)) a(Xb(x0))
Xb(b(x0)) b(Xb(x0))
Xb(c(x0)) c(Xb(x0))
Xc(a(x0)) a(Xc(x0))
Xc(b(x0)) b(Xc(x0))
Xc(c(x0)) c(Xc(x0))
Xa(E(x0)) a(E(x0))
Xb(E(x0)) b(E(x0))
Xc(E(x0)) c(E(x0))
W(V(x0)) R(L(x0))
L(a(x0)) Ya(L(x0))
L(b(x0)) Yb(L(x0))
L(c(x0)) Yc(L(x0))
L(a(a(x0))) D(b(b(b(x0))))
L(b(b(x0))) D(c(c(c(x0))))
L(c(c(c(c(x0))))) D(a(b(x0)))
Ya(D(x0)) D(a(x0))
Yb(D(x0)) D(b(x0))
Yc(D(x0)) D(c(x0))
R(D(x0)) B(x0)

Proof

1 Rule Removal

Using the linear polynomial interpretation over the arctic semiring over the integers
[a(x1)] = 9 · x1 + -∞
[Yc(x1)] = 4 · x1 + -∞
[c(x1)] = 4 · x1 + -∞
[V(x1)] = 0 · x1 + -∞
[W(x1)] = 8 · x1 + -∞
[D(x1)] = 0 · x1 + -∞
[Xa(x1)] = 9 · x1 + -∞
[E(x1)] = 0 · x1 + -∞
[B(x1)] = 8 · x1 + -∞
[Xb(x1)] = 6 · x1 + -∞
[Yb(x1)] = 6 · x1 + -∞
[R(x1)] = 8 · x1 + -∞
[L(x1)] = 0 · x1 + -∞
[Xc(x1)] = 4 · x1 + -∞
[Ya(x1)] = 9 · x1 + -∞
[b(x1)] = 6 · x1 + -∞
[M(x1)] = 0 · x1 + -∞
the rules
B(x0) W(M(M(M(V(x0)))))
M(x0) x0
M(V(a(x0))) V(Xa(x0))
M(V(b(x0))) V(Xb(x0))
M(V(c(x0))) V(Xc(x0))
Xa(a(x0)) a(Xa(x0))
Xa(b(x0)) b(Xa(x0))
Xa(c(x0)) c(Xa(x0))
Xb(a(x0)) a(Xb(x0))
Xb(b(x0)) b(Xb(x0))
Xb(c(x0)) c(Xb(x0))
Xc(a(x0)) a(Xc(x0))
Xc(b(x0)) b(Xc(x0))
Xc(c(x0)) c(Xc(x0))
Xa(E(x0)) a(E(x0))
Xb(E(x0)) b(E(x0))
Xc(E(x0)) c(E(x0))
W(V(x0)) R(L(x0))
L(a(x0)) Ya(L(x0))
L(b(x0)) Yb(L(x0))
L(c(x0)) Yc(L(x0))
L(a(a(x0))) D(b(b(b(x0))))
L(b(b(x0))) D(c(c(c(x0))))
Ya(D(x0)) D(a(x0))
Yb(D(x0)) D(b(x0))
Yc(D(x0)) D(c(x0))
R(D(x0)) B(x0)
remain.

1.1 Rule Removal

Using the linear polynomial interpretation over the arctic semiring over the integers
[a(x1)] = 2 · x1 + -∞
[Yc(x1)] = 0 · x1 + -∞
[c(x1)] = 0 · x1 + -∞
[V(x1)] = 0 · x1 + -∞
[W(x1)] = 0 · x1 + -∞
[D(x1)] = 0 · x1 + -∞
[Xa(x1)] = 2 · x1 + -∞
[E(x1)] = 2 · x1 + -∞
[B(x1)] = 0 · x1 + -∞
[Xb(x1)] = 0 · x1 + -∞
[Yb(x1)] = 0 · x1 + -∞
[R(x1)] = 0 · x1 + -∞
[L(x1)] = 0 · x1 + -∞
[Xc(x1)] = 0 · x1 + -∞
[Ya(x1)] = 2 · x1 + -∞
[b(x1)] = 0 · x1 + -∞
[M(x1)] = 0 · x1 + -∞
the rules
B(x0) W(M(M(M(V(x0)))))
M(x0) x0
M(V(a(x0))) V(Xa(x0))
M(V(b(x0))) V(Xb(x0))
M(V(c(x0))) V(Xc(x0))
Xa(a(x0)) a(Xa(x0))
Xa(b(x0)) b(Xa(x0))
Xa(c(x0)) c(Xa(x0))
Xb(a(x0)) a(Xb(x0))
Xb(b(x0)) b(Xb(x0))
Xb(c(x0)) c(Xb(x0))
Xc(a(x0)) a(Xc(x0))
Xc(b(x0)) b(Xc(x0))
Xc(c(x0)) c(Xc(x0))
Xa(E(x0)) a(E(x0))
Xb(E(x0)) b(E(x0))
Xc(E(x0)) c(E(x0))
W(V(x0)) R(L(x0))
L(a(x0)) Ya(L(x0))
L(b(x0)) Yb(L(x0))
L(c(x0)) Yc(L(x0))
L(b(b(x0))) D(c(c(c(x0))))
Ya(D(x0)) D(a(x0))
Yb(D(x0)) D(b(x0))
Yc(D(x0)) D(c(x0))
R(D(x0)) B(x0)
remain.

1.1.1 Rule Removal

Using the linear polynomial interpretation over the arctic semiring over the integers
[a(x1)] = 0 · x1 + -∞
[Yc(x1)] = 0 · x1 + -∞
[c(x1)] = 0 · x1 + -∞
[V(x1)] = 0 · x1 + -∞
[W(x1)] = 6 · x1 + -∞
[D(x1)] = 2 · x1 + -∞
[Xa(x1)] = 0 · x1 + -∞
[E(x1)] = 0 · x1 + -∞
[B(x1)] = 8 · x1 + -∞
[Xb(x1)] = 1 · x1 + -∞
[Yb(x1)] = 1 · x1 + -∞
[R(x1)] = 6 · x1 + -∞
[L(x1)] = 0 · x1 + -∞
[Xc(x1)] = 0 · x1 + -∞
[Ya(x1)] = 0 · x1 + -∞
[b(x1)] = 1 · x1 + -∞
[M(x1)] = 0 · x1 + -∞
the rules
M(x0) x0
M(V(a(x0))) V(Xa(x0))
M(V(b(x0))) V(Xb(x0))
M(V(c(x0))) V(Xc(x0))
Xa(a(x0)) a(Xa(x0))
Xa(b(x0)) b(Xa(x0))
Xa(c(x0)) c(Xa(x0))
Xb(a(x0)) a(Xb(x0))
Xb(b(x0)) b(Xb(x0))
Xb(c(x0)) c(Xb(x0))
Xc(a(x0)) a(Xc(x0))
Xc(b(x0)) b(Xc(x0))
Xc(c(x0)) c(Xc(x0))
Xa(E(x0)) a(E(x0))
Xb(E(x0)) b(E(x0))
Xc(E(x0)) c(E(x0))
W(V(x0)) R(L(x0))
L(a(x0)) Ya(L(x0))
L(b(x0)) Yb(L(x0))
L(c(x0)) Yc(L(x0))
L(b(b(x0))) D(c(c(c(x0))))
Ya(D(x0)) D(a(x0))
Yb(D(x0)) D(b(x0))
Yc(D(x0)) D(c(x0))
R(D(x0)) B(x0)
remain.

1.1.1.1 Bounds

The given TRS is match-bounded by 1. This is shown by the following automaton.