YES
by ttt2 (version ttt2 1.15)
The rewrite relation of the following TRS is considered.
B(x0) | → | W(M(M(M(V(x0))))) |
M(x0) | → | x0 |
M(V(a(x0))) | → | V(Xa(x0)) |
M(V(b(x0))) | → | V(Xb(x0)) |
M(V(c(x0))) | → | V(Xc(x0)) |
Xa(a(x0)) | → | a(Xa(x0)) |
Xa(b(x0)) | → | b(Xa(x0)) |
Xa(c(x0)) | → | c(Xa(x0)) |
Xb(a(x0)) | → | a(Xb(x0)) |
Xb(b(x0)) | → | b(Xb(x0)) |
Xb(c(x0)) | → | c(Xb(x0)) |
Xc(a(x0)) | → | a(Xc(x0)) |
Xc(b(x0)) | → | b(Xc(x0)) |
Xc(c(x0)) | → | c(Xc(x0)) |
Xa(E(x0)) | → | a(E(x0)) |
Xb(E(x0)) | → | b(E(x0)) |
Xc(E(x0)) | → | c(E(x0)) |
W(V(x0)) | → | R(L(x0)) |
L(a(x0)) | → | Ya(L(x0)) |
L(b(x0)) | → | Yb(L(x0)) |
L(c(x0)) | → | Yc(L(x0)) |
L(a(a(x0))) | → | D(b(b(b(x0)))) |
L(b(b(x0))) | → | D(c(c(c(x0)))) |
L(c(c(c(c(x0))))) | → | D(a(b(x0))) |
Ya(D(x0)) | → | D(a(x0)) |
Yb(D(x0)) | → | D(b(x0)) |
Yc(D(x0)) | → | D(c(x0)) |
R(D(x0)) | → | B(x0) |
[a(x1)] | = | 9 · x1 + -∞ |
[Yc(x1)] | = | 4 · x1 + -∞ |
[c(x1)] | = | 4 · x1 + -∞ |
[V(x1)] | = | 0 · x1 + -∞ |
[W(x1)] | = | 8 · x1 + -∞ |
[D(x1)] | = | 0 · x1 + -∞ |
[Xa(x1)] | = | 9 · x1 + -∞ |
[E(x1)] | = | 0 · x1 + -∞ |
[B(x1)] | = | 8 · x1 + -∞ |
[Xb(x1)] | = | 6 · x1 + -∞ |
[Yb(x1)] | = | 6 · x1 + -∞ |
[R(x1)] | = | 8 · x1 + -∞ |
[L(x1)] | = | 0 · x1 + -∞ |
[Xc(x1)] | = | 4 · x1 + -∞ |
[Ya(x1)] | = | 9 · x1 + -∞ |
[b(x1)] | = | 6 · x1 + -∞ |
[M(x1)] | = | 0 · x1 + -∞ |
B(x0) | → | W(M(M(M(V(x0))))) |
M(x0) | → | x0 |
M(V(a(x0))) | → | V(Xa(x0)) |
M(V(b(x0))) | → | V(Xb(x0)) |
M(V(c(x0))) | → | V(Xc(x0)) |
Xa(a(x0)) | → | a(Xa(x0)) |
Xa(b(x0)) | → | b(Xa(x0)) |
Xa(c(x0)) | → | c(Xa(x0)) |
Xb(a(x0)) | → | a(Xb(x0)) |
Xb(b(x0)) | → | b(Xb(x0)) |
Xb(c(x0)) | → | c(Xb(x0)) |
Xc(a(x0)) | → | a(Xc(x0)) |
Xc(b(x0)) | → | b(Xc(x0)) |
Xc(c(x0)) | → | c(Xc(x0)) |
Xa(E(x0)) | → | a(E(x0)) |
Xb(E(x0)) | → | b(E(x0)) |
Xc(E(x0)) | → | c(E(x0)) |
W(V(x0)) | → | R(L(x0)) |
L(a(x0)) | → | Ya(L(x0)) |
L(b(x0)) | → | Yb(L(x0)) |
L(c(x0)) | → | Yc(L(x0)) |
L(a(a(x0))) | → | D(b(b(b(x0)))) |
L(b(b(x0))) | → | D(c(c(c(x0)))) |
Ya(D(x0)) | → | D(a(x0)) |
Yb(D(x0)) | → | D(b(x0)) |
Yc(D(x0)) | → | D(c(x0)) |
R(D(x0)) | → | B(x0) |
[a(x1)] | = | 2 · x1 + -∞ |
[Yc(x1)] | = | 0 · x1 + -∞ |
[c(x1)] | = | 0 · x1 + -∞ |
[V(x1)] | = | 0 · x1 + -∞ |
[W(x1)] | = | 0 · x1 + -∞ |
[D(x1)] | = | 0 · x1 + -∞ |
[Xa(x1)] | = | 2 · x1 + -∞ |
[E(x1)] | = | 2 · x1 + -∞ |
[B(x1)] | = | 0 · x1 + -∞ |
[Xb(x1)] | = | 0 · x1 + -∞ |
[Yb(x1)] | = | 0 · x1 + -∞ |
[R(x1)] | = | 0 · x1 + -∞ |
[L(x1)] | = | 0 · x1 + -∞ |
[Xc(x1)] | = | 0 · x1 + -∞ |
[Ya(x1)] | = | 2 · x1 + -∞ |
[b(x1)] | = | 0 · x1 + -∞ |
[M(x1)] | = | 0 · x1 + -∞ |
B(x0) | → | W(M(M(M(V(x0))))) |
M(x0) | → | x0 |
M(V(a(x0))) | → | V(Xa(x0)) |
M(V(b(x0))) | → | V(Xb(x0)) |
M(V(c(x0))) | → | V(Xc(x0)) |
Xa(a(x0)) | → | a(Xa(x0)) |
Xa(b(x0)) | → | b(Xa(x0)) |
Xa(c(x0)) | → | c(Xa(x0)) |
Xb(a(x0)) | → | a(Xb(x0)) |
Xb(b(x0)) | → | b(Xb(x0)) |
Xb(c(x0)) | → | c(Xb(x0)) |
Xc(a(x0)) | → | a(Xc(x0)) |
Xc(b(x0)) | → | b(Xc(x0)) |
Xc(c(x0)) | → | c(Xc(x0)) |
Xa(E(x0)) | → | a(E(x0)) |
Xb(E(x0)) | → | b(E(x0)) |
Xc(E(x0)) | → | c(E(x0)) |
W(V(x0)) | → | R(L(x0)) |
L(a(x0)) | → | Ya(L(x0)) |
L(b(x0)) | → | Yb(L(x0)) |
L(c(x0)) | → | Yc(L(x0)) |
L(b(b(x0))) | → | D(c(c(c(x0)))) |
Ya(D(x0)) | → | D(a(x0)) |
Yb(D(x0)) | → | D(b(x0)) |
Yc(D(x0)) | → | D(c(x0)) |
R(D(x0)) | → | B(x0) |
[a(x1)] | = | 0 · x1 + -∞ |
[Yc(x1)] | = | 0 · x1 + -∞ |
[c(x1)] | = | 0 · x1 + -∞ |
[V(x1)] | = | 0 · x1 + -∞ |
[W(x1)] | = | 6 · x1 + -∞ |
[D(x1)] | = | 2 · x1 + -∞ |
[Xa(x1)] | = | 0 · x1 + -∞ |
[E(x1)] | = | 0 · x1 + -∞ |
[B(x1)] | = | 8 · x1 + -∞ |
[Xb(x1)] | = | 1 · x1 + -∞ |
[Yb(x1)] | = | 1 · x1 + -∞ |
[R(x1)] | = | 6 · x1 + -∞ |
[L(x1)] | = | 0 · x1 + -∞ |
[Xc(x1)] | = | 0 · x1 + -∞ |
[Ya(x1)] | = | 0 · x1 + -∞ |
[b(x1)] | = | 1 · x1 + -∞ |
[M(x1)] | = | 0 · x1 + -∞ |
M(x0) | → | x0 |
M(V(a(x0))) | → | V(Xa(x0)) |
M(V(b(x0))) | → | V(Xb(x0)) |
M(V(c(x0))) | → | V(Xc(x0)) |
Xa(a(x0)) | → | a(Xa(x0)) |
Xa(b(x0)) | → | b(Xa(x0)) |
Xa(c(x0)) | → | c(Xa(x0)) |
Xb(a(x0)) | → | a(Xb(x0)) |
Xb(b(x0)) | → | b(Xb(x0)) |
Xb(c(x0)) | → | c(Xb(x0)) |
Xc(a(x0)) | → | a(Xc(x0)) |
Xc(b(x0)) | → | b(Xc(x0)) |
Xc(c(x0)) | → | c(Xc(x0)) |
Xa(E(x0)) | → | a(E(x0)) |
Xb(E(x0)) | → | b(E(x0)) |
Xc(E(x0)) | → | c(E(x0)) |
W(V(x0)) | → | R(L(x0)) |
L(a(x0)) | → | Ya(L(x0)) |
L(b(x0)) | → | Yb(L(x0)) |
L(c(x0)) | → | Yc(L(x0)) |
L(b(b(x0))) | → | D(c(c(c(x0)))) |
Ya(D(x0)) | → | D(a(x0)) |
Yb(D(x0)) | → | D(b(x0)) |
Yc(D(x0)) | → | D(c(x0)) |
R(D(x0)) | → | B(x0) |
final states:
{35, 34, 32, 30, 26, 25, 24, 23, 21, 20, 19, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 6, 4, 2, 1}
transitions:
23 | → | 22 |
25 | → | 22 |
29 | → | 36 |
29 | → | 42 |
29 | → | 46 |
29 | → | 50 |
10 | → | 3 |
51 | → | 21 |
15 | → | 7 |
57 | → | 37 |
9 | → | 3 |
37 | → | 56 |
37 | → | 58 |
37 | → | 64 |
37 | → | 66 |
59 | → | 37 |
65 | → | 37 |
20 | → | 7 |
8 | → | 3 |
13 | → | 5 |
26 | → | 22 |
38 | → | 22 |
38 | → | 23 |
38 | → | 24 |
38 | → | 25 |
67 | → | 21 |
11 | → | 5 |
16 | → | 7 |
14 | → | 7 |
12 | → | 5 |
17 | → | 3 |
47 | → | 37 |
24 | → | 22 |
19 | → | 5 |
43 | → | 37 |
Xc0(1) | → | 7 |
D0(31) | → | 30 |
D0(29) | → | 26 |
D0(27) | → | 34 |
D0(33) | → | 32 |
f170 | → | 1 |
V0(7) | → | 6 |
V0(5) | → | 4 |
V0(3) | → | 2 |
L0(1) | → | 22 |
c0(27) | → | 28 |
c0(5) | → | 13 |
c0(28) | → | 29 |
c0(3) | → | 10 |
c0(7) | → | 16 |
c0(18) | → | 20 |
c0(1) | → | 27 |
a0(5) | → | 11 |
a0(7) | → | 14 |
a0(18) | → | 17 |
a0(1) | → | 31 |
a0(3) | → | 8 |
Yb0(22) | → | 24 |
b0(3) | → | 9 |
b0(5) | → | 12 |
b0(18) | → | 19 |
b0(1) | → | 33 |
b0(7) | → | 15 |
B0(1) | → | 35 |
Xb0(1) | → | 5 |
b1(42) | → | 43 |
b1(58) | → | 59 |
c1(64) | → | 65 |
c1(46) | → | 47 |
R0(22) | → | 21 |
E0(1) | → | 18 |
a1(56) | → | 57 |
a1(36) | → | 37 |
Yc0(22) | → | 25 |
B1(50) | → | 51 |
B1(66) | → | 67 |
D1(37) | → | 38 |
Ya0(22) | → | 23 |
Xa0(1) | → | 3 |