YES
0 QTRS
↳1 QTRS Reverse (⇔, 0 ms)
↳2 QTRS
↳3 QTRSRRRProof (⇔, 53 ms)
↳4 QTRS
↳5 Overlay + Local Confluence (⇔, 0 ms)
↳6 QTRS
↳7 DependencyPairsProof (⇔, 10 ms)
↳8 QDP
↳9 DependencyGraphProof (⇔, 0 ms)
↳10 QDP
↳11 UsableRulesProof (⇔, 0 ms)
↳12 QDP
↳13 QReductionProof (⇔, 0 ms)
↳14 QDP
↳15 QDPSizeChangeProof (⇔, 0 ms)
↳16 YES
Begin(a(x)) → Wait(Right1(x))
Begin(b(b(b(b(x))))) → Wait(Right2(x))
Begin(b(b(b(x)))) → Wait(Right3(x))
Begin(b(b(x))) → Wait(Right4(x))
Begin(b(x)) → Wait(Right5(x))
Right1(a(End(x))) → Left(b(b(b(End(x)))))
Right2(b(End(x))) → Left(a(a(a(End(x)))))
Right3(b(b(End(x)))) → Left(a(a(a(End(x)))))
Right4(b(b(b(End(x))))) → Left(a(a(a(End(x)))))
Right5(b(b(b(b(End(x)))))) → Left(a(a(a(End(x)))))
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Right4(a(x)) → Aa(Right4(x))
Right5(a(x)) → Aa(Right5(x))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right4(b(x)) → Ab(Right4(x))
Right5(b(x)) → Ab(Right5(x))
Aa(Left(x)) → Left(a(x))
Ab(Left(x)) → Left(b(x))
Wait(Left(x)) → Begin(x)
a(a(x)) → b(b(b(x)))
b(b(b(b(b(x))))) → a(a(a(x)))
a(Begin(x)) → Right1(Wait(x))
b(b(b(b(Begin(x))))) → Right2(Wait(x))
b(b(b(Begin(x)))) → Right3(Wait(x))
b(b(Begin(x))) → Right4(Wait(x))
b(Begin(x)) → Right5(Wait(x))
End(a(Right1(x))) → End(b(b(b(Left(x)))))
End(b(Right2(x))) → End(a(a(a(Left(x)))))
End(b(b(Right3(x)))) → End(a(a(a(Left(x)))))
End(b(b(b(Right4(x))))) → End(a(a(a(Left(x)))))
End(b(b(b(b(Right5(x)))))) → End(a(a(a(Left(x)))))
a(Right1(x)) → Right1(Aa(x))
a(Right2(x)) → Right2(Aa(x))
a(Right3(x)) → Right3(Aa(x))
a(Right4(x)) → Right4(Aa(x))
a(Right5(x)) → Right5(Aa(x))
b(Right1(x)) → Right1(Ab(x))
b(Right2(x)) → Right2(Ab(x))
b(Right3(x)) → Right3(Ab(x))
b(Right4(x)) → Right4(Ab(x))
b(Right5(x)) → Right5(Ab(x))
Left(Aa(x)) → a(Left(x))
Left(Ab(x)) → b(Left(x))
Left(Wait(x)) → Begin(x)
a(a(x)) → b(b(b(x)))
b(b(b(b(b(x))))) → a(a(a(x)))
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(Aa(x1)) = 24 + x1
POL(Ab(x1)) = 15 + x1
POL(Begin(x1)) = x1
POL(End(x1)) = x1
POL(Left(x1)) = x1
POL(Right1(x1)) = 22 + x1
POL(Right2(x1)) = 58 + x1
POL(Right3(x1)) = 43 + x1
POL(Right4(x1)) = 28 + x1
POL(Right5(x1)) = 13 + x1
POL(Wait(x1)) = 1 + x1
POL(a(x1)) = 24 + x1
POL(b(x1)) = 15 + x1
a(Begin(x)) → Right1(Wait(x))
b(b(b(b(Begin(x))))) → Right2(Wait(x))
b(b(b(Begin(x)))) → Right3(Wait(x))
b(b(Begin(x))) → Right4(Wait(x))
b(Begin(x)) → Right5(Wait(x))
End(a(Right1(x))) → End(b(b(b(Left(x)))))
End(b(Right2(x))) → End(a(a(a(Left(x)))))
End(b(b(Right3(x)))) → End(a(a(a(Left(x)))))
End(b(b(b(Right4(x))))) → End(a(a(a(Left(x)))))
End(b(b(b(b(Right5(x)))))) → End(a(a(a(Left(x)))))
Left(Wait(x)) → Begin(x)
a(a(x)) → b(b(b(x)))
b(b(b(b(b(x))))) → a(a(a(x)))
a(Right1(x)) → Right1(Aa(x))
a(Right2(x)) → Right2(Aa(x))
a(Right3(x)) → Right3(Aa(x))
a(Right4(x)) → Right4(Aa(x))
a(Right5(x)) → Right5(Aa(x))
b(Right1(x)) → Right1(Ab(x))
b(Right2(x)) → Right2(Ab(x))
b(Right3(x)) → Right3(Ab(x))
b(Right4(x)) → Right4(Ab(x))
b(Right5(x)) → Right5(Ab(x))
Left(Aa(x)) → a(Left(x))
Left(Ab(x)) → b(Left(x))
a(Right1(x)) → Right1(Aa(x))
a(Right2(x)) → Right2(Aa(x))
a(Right3(x)) → Right3(Aa(x))
a(Right4(x)) → Right4(Aa(x))
a(Right5(x)) → Right5(Aa(x))
b(Right1(x)) → Right1(Ab(x))
b(Right2(x)) → Right2(Ab(x))
b(Right3(x)) → Right3(Ab(x))
b(Right4(x)) → Right4(Ab(x))
b(Right5(x)) → Right5(Ab(x))
Left(Aa(x)) → a(Left(x))
Left(Ab(x)) → b(Left(x))
a(Right1(x0))
a(Right2(x0))
a(Right3(x0))
a(Right4(x0))
a(Right5(x0))
b(Right1(x0))
b(Right2(x0))
b(Right3(x0))
b(Right4(x0))
b(Right5(x0))
Left(Aa(x0))
Left(Ab(x0))
LEFT(Aa(x)) → A(Left(x))
LEFT(Aa(x)) → LEFT(x)
LEFT(Ab(x)) → B(Left(x))
LEFT(Ab(x)) → LEFT(x)
a(Right1(x)) → Right1(Aa(x))
a(Right2(x)) → Right2(Aa(x))
a(Right3(x)) → Right3(Aa(x))
a(Right4(x)) → Right4(Aa(x))
a(Right5(x)) → Right5(Aa(x))
b(Right1(x)) → Right1(Ab(x))
b(Right2(x)) → Right2(Ab(x))
b(Right3(x)) → Right3(Ab(x))
b(Right4(x)) → Right4(Ab(x))
b(Right5(x)) → Right5(Ab(x))
Left(Aa(x)) → a(Left(x))
Left(Ab(x)) → b(Left(x))
a(Right1(x0))
a(Right2(x0))
a(Right3(x0))
a(Right4(x0))
a(Right5(x0))
b(Right1(x0))
b(Right2(x0))
b(Right3(x0))
b(Right4(x0))
b(Right5(x0))
Left(Aa(x0))
Left(Ab(x0))
LEFT(Ab(x)) → LEFT(x)
LEFT(Aa(x)) → LEFT(x)
a(Right1(x)) → Right1(Aa(x))
a(Right2(x)) → Right2(Aa(x))
a(Right3(x)) → Right3(Aa(x))
a(Right4(x)) → Right4(Aa(x))
a(Right5(x)) → Right5(Aa(x))
b(Right1(x)) → Right1(Ab(x))
b(Right2(x)) → Right2(Ab(x))
b(Right3(x)) → Right3(Ab(x))
b(Right4(x)) → Right4(Ab(x))
b(Right5(x)) → Right5(Ab(x))
Left(Aa(x)) → a(Left(x))
Left(Ab(x)) → b(Left(x))
a(Right1(x0))
a(Right2(x0))
a(Right3(x0))
a(Right4(x0))
a(Right5(x0))
b(Right1(x0))
b(Right2(x0))
b(Right3(x0))
b(Right4(x0))
b(Right5(x0))
Left(Aa(x0))
Left(Ab(x0))
LEFT(Ab(x)) → LEFT(x)
LEFT(Aa(x)) → LEFT(x)
a(Right1(x0))
a(Right2(x0))
a(Right3(x0))
a(Right4(x0))
a(Right5(x0))
b(Right1(x0))
b(Right2(x0))
b(Right3(x0))
b(Right4(x0))
b(Right5(x0))
Left(Aa(x0))
Left(Ab(x0))
a(Right1(x0))
a(Right2(x0))
a(Right3(x0))
a(Right4(x0))
a(Right5(x0))
b(Right1(x0))
b(Right2(x0))
b(Right3(x0))
b(Right4(x0))
b(Right5(x0))
Left(Aa(x0))
Left(Ab(x0))
LEFT(Ab(x)) → LEFT(x)
LEFT(Aa(x)) → LEFT(x)
From the DPs we obtained the following set of size-change graphs: