NO Termination w.r.t. Q proof of /home/cern_httpd/provide/research/cycsrs/tpdb/TPDB-d9b80194f163/SRS_Standard/Zantema_04/z092.srs-torpacyc2out-split.srs

(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

Begin(0(x)) → Wait(Right1(x))
Begin(1'(x)) → Wait(Right2(x))
Begin(q2(0(x))) → Wait(Right3(x))
Begin(0(x)) → Wait(Right4(x))
Begin(q2(0(x))) → Wait(Right5(x))
Begin(0(x)) → Wait(Right6(x))
Begin(q2(1'(x))) → Wait(Right7(x))
Begin(1'(x)) → Wait(Right8(x))
Begin(q2(1'(x))) → Wait(Right9(x))
Begin(1'(x)) → Wait(Right10(x))
Begin(1'(x)) → Wait(Right11(x))
Right1(q1(End(x))) → Left(0(q1(End(x))))
Right2(q1(End(x))) → Left(1'(q1(End(x))))
Right3(0(End(x))) → Left(q2(0(0(End(x)))))
Right4(0(q2(End(x)))) → Left(q2(0(0(End(x)))))
Right5(1'(End(x))) → Left(q2(1'(0(End(x)))))
Right6(1'(q2(End(x)))) → Left(q2(1'(0(End(x)))))
Right7(0(End(x))) → Left(q2(0(1'(End(x)))))
Right8(0(q2(End(x)))) → Left(q2(0(1'(End(x)))))
Right9(1'(End(x))) → Left(q2(1'(1'(End(x)))))
Right10(1'(q2(End(x)))) → Left(q2(1'(1'(End(x)))))
Right11(q3(End(x))) → Left(1'(q3(End(x))))
Right1(q1(x)) → Aq1(Right1(x))
Right2(q1(x)) → Aq1(Right2(x))
Right3(q1(x)) → Aq1(Right3(x))
Right4(q1(x)) → Aq1(Right4(x))
Right5(q1(x)) → Aq1(Right5(x))
Right6(q1(x)) → Aq1(Right6(x))
Right7(q1(x)) → Aq1(Right7(x))
Right8(q1(x)) → Aq1(Right8(x))
Right9(q1(x)) → Aq1(Right9(x))
Right10(q1(x)) → Aq1(Right10(x))
Right11(q1(x)) → Aq1(Right11(x))
Right1(0(x)) → A0(Right1(x))
Right2(0(x)) → A0(Right2(x))
Right3(0(x)) → A0(Right3(x))
Right4(0(x)) → A0(Right4(x))
Right5(0(x)) → A0(Right5(x))
Right6(0(x)) → A0(Right6(x))
Right7(0(x)) → A0(Right7(x))
Right8(0(x)) → A0(Right8(x))
Right9(0(x)) → A0(Right9(x))
Right10(0(x)) → A0(Right10(x))
Right11(0(x)) → A0(Right11(x))
Right1(1'(x)) → A1'(Right1(x))
Right2(1'(x)) → A1'(Right2(x))
Right3(1'(x)) → A1'(Right3(x))
Right4(1'(x)) → A1'(Right4(x))
Right5(1'(x)) → A1'(Right5(x))
Right6(1'(x)) → A1'(Right6(x))
Right7(1'(x)) → A1'(Right7(x))
Right8(1'(x)) → A1'(Right8(x))
Right9(1'(x)) → A1'(Right9(x))
Right10(1'(x)) → A1'(Right10(x))
Right11(1'(x)) → A1'(Right11(x))
Right1(q2(x)) → Aq2(Right1(x))
Right2(q2(x)) → Aq2(Right2(x))
Right3(q2(x)) → Aq2(Right3(x))
Right4(q2(x)) → Aq2(Right4(x))
Right5(q2(x)) → Aq2(Right5(x))
Right6(q2(x)) → Aq2(Right6(x))
Right7(q2(x)) → Aq2(Right7(x))
Right8(q2(x)) → Aq2(Right8(x))
Right9(q2(x)) → Aq2(Right9(x))
Right10(q2(x)) → Aq2(Right10(x))
Right11(q2(x)) → Aq2(Right11(x))
Right1(q3(x)) → Aq3(Right1(x))
Right2(q3(x)) → Aq3(Right2(x))
Right3(q3(x)) → Aq3(Right3(x))
Right4(q3(x)) → Aq3(Right4(x))
Right5(q3(x)) → Aq3(Right5(x))
Right6(q3(x)) → Aq3(Right6(x))
Right7(q3(x)) → Aq3(Right7(x))
Right8(q3(x)) → Aq3(Right8(x))
Right9(q3(x)) → Aq3(Right9(x))
Right10(q3(x)) → Aq3(Right10(x))
Right11(q3(x)) → Aq3(Right11(x))
Aq1(Left(x)) → Left(q1(x))
A0(Left(x)) → Left(0(x))
A1'(Left(x)) → Left(1'(x))
Aq2(Left(x)) → Left(q2(x))
Aq3(Left(x)) → Left(q3(x))
Wait(Left(x)) → Begin(x)
q1(0(x)) → 0(q1(x))
q1(1'(x)) → 1'(q1(x))
0(q2(0(x))) → q2(0(0(x)))
1'(q2(0(x))) → q2(1'(0(x)))
0(q2(1'(x))) → q2(0(1'(x)))
1'(q2(1'(x))) → q2(1'(1'(x)))
q3(1'(x)) → 1'(q3(x))

Q is empty.

(1) NonTerminationProof (COMPLETE transformation)

We used the non-termination processor [OPPELT08] to show that the SRS problem is infinite.

Found the self-embedding DerivationStructure:
Wait Left 1' q3 EndWait Left 1' q3 End

Wait Left 1' q3 EndWait Left 1' q3 End
by OverlapClosure OC 2
Wait Left 1'Wait Right11
by OverlapClosure OC 2
Wait LeftBegin
by original rule (OC 1)
Begin 1'Wait Right11
by original rule (OC 1)
Right11 q3 EndLeft 1' q3 End
by original rule (OC 1)

(2) NO