YES
Termination Proof
Termination Proof
by ttt2 (version ttt2 1.15)
Input
The rewrite relation of the following TRS is considered.
b(d(b(x0))) |
→ |
c(d(b(x0))) |
b(a(c(x0))) |
→ |
b(c(x0)) |
a(d(x0)) |
→ |
d(c(x0)) |
b(b(b(x0))) |
→ |
a(b(c(x0))) |
d(c(x0)) |
→ |
b(d(x0)) |
d(c(x0)) |
→ |
d(b(d(x0))) |
d(a(c(x0))) |
→ |
b(b(x0)) |
Proof
1 Rule Removal
Using the
linear polynomial interpretation over the arctic semiring over the integers
[d(x1)] |
= |
0 ·
x1 +
-∞
|
[a(x1)] |
= |
1 ·
x1 +
-∞
|
[b(x1)] |
= |
1 ·
x1 +
-∞
|
[c(x1)] |
= |
1 ·
x1 +
-∞
|
the
rules
b(d(b(x0))) |
→ |
c(d(b(x0))) |
a(d(x0)) |
→ |
d(c(x0)) |
b(b(b(x0))) |
→ |
a(b(c(x0))) |
d(c(x0)) |
→ |
b(d(x0)) |
d(c(x0)) |
→ |
d(b(d(x0))) |
d(a(c(x0))) |
→ |
b(b(x0)) |
remain.
1.1 String Reversal
Since only unary symbols occur, one can reverse all terms and obtains the TRS
b(d(b(x0))) |
→ |
b(d(c(x0))) |
d(a(x0)) |
→ |
c(d(x0)) |
b(b(b(x0))) |
→ |
c(b(a(x0))) |
c(d(x0)) |
→ |
d(b(x0)) |
c(d(x0)) |
→ |
d(b(d(x0))) |
c(a(d(x0))) |
→ |
b(b(x0)) |
1.1.1 Rule Removal
Using the
linear polynomial interpretation over (2 x 2)-matrices with strict dimension 1
over the naturals
[d(x1)] |
= |
·
x1 +
|
[a(x1)] |
= |
·
x1 +
|
[b(x1)] |
= |
·
x1 +
|
[c(x1)] |
= |
·
x1 +
|
the
rules
b(d(b(x0))) |
→ |
b(d(c(x0))) |
b(b(b(x0))) |
→ |
c(b(a(x0))) |
c(d(x0)) |
→ |
d(b(x0)) |
c(d(x0)) |
→ |
d(b(d(x0))) |
c(a(d(x0))) |
→ |
b(b(x0)) |
remain.
1.1.1.1 Bounds
The given TRS is
match-bounded by 1.
This is shown by the following automaton.
-
final states:
{13, 10, 8, 5, 1}
-
transitions:
10 |
→ |
3 |
9 |
→ |
14 |
5 |
→ |
13 |
5 |
→ |
9 |
1 |
→ |
12 |
1 |
→ |
9 |
8 |
→ |
3 |
13 |
→ |
3 |
17 |
→ |
9 |
17 |
→ |
12 |
17 |
→ |
1 |
d0(9) |
→ |
8 |
d0(3) |
→ |
4 |
d0(2) |
→ |
11 |
d0(12) |
→ |
10 |
f40
|
→ |
2 |
a0(2) |
→ |
6 |
b1(16) |
→ |
17 |
d1(15) |
→ |
16 |
c0(2) |
→ |
3 |
c0(7) |
→ |
5 |
c1(14) |
→ |
15 |
b0(6) |
→ |
7 |
b0(2) |
→ |
9 |
b0(9) |
→ |
13 |
b0(11) |
→ |
12 |
b0(4) |
→ |
1 |