YES
0 QTRS
↳1 QTRSRRRProof (⇔, 29 ms)
↳2 QTRS
↳3 DependencyPairsProof (⇔, 0 ms)
↳4 QDP
↳5 DependencyGraphProof (⇔, 0 ms)
↳6 QDP
↳7 MRRProof (⇔, 31 ms)
↳8 QDP
↳9 PisEmptyProof (⇔, 0 ms)
↳10 YES
b(c(a(x))) → a(b(x))
b(b(b(x))) → c(a(c(x)))
c(d(x)) → d(c(x))
c(d(b(x))) → d(c(c(x)))
d(c(x)) → b(b(b(x)))
c(b(x)) → d(a(x))
d(b(c(x))) → a(a(x))
d(a(x)) → b(x)
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(a(x1)) = x1
POL(b(x1)) = 1 + x1
POL(c(x1)) = 1 + x1
POL(d(x1)) = 2 + x1
b(c(a(x))) → a(b(x))
b(b(b(x))) → c(a(c(x)))
d(b(c(x))) → a(a(x))
d(a(x)) → b(x)
c(d(x)) → d(c(x))
c(d(b(x))) → d(c(c(x)))
d(c(x)) → b(b(b(x)))
c(b(x)) → d(a(x))
C(d(x)) → D(c(x))
C(d(x)) → C(x)
C(d(b(x))) → D(c(c(x)))
C(d(b(x))) → C(c(x))
C(d(b(x))) → C(x)
C(b(x)) → D(a(x))
c(d(x)) → d(c(x))
c(d(b(x))) → d(c(c(x)))
d(c(x)) → b(b(b(x)))
c(b(x)) → d(a(x))
C(d(b(x))) → C(c(x))
C(d(x)) → C(x)
C(d(b(x))) → C(x)
c(d(x)) → d(c(x))
c(d(b(x))) → d(c(c(x)))
d(c(x)) → b(b(b(x)))
c(b(x)) → d(a(x))
C(d(b(x))) → C(c(x))
C(d(x)) → C(x)
C(d(b(x))) → C(x)
POL(C(x1)) = 2·x1
POL(a(x1)) = x1
POL(b(x1)) = 1 + x1
POL(c(x1)) = 1 + x1
POL(d(x1)) = 2 + x1
c(d(x)) → d(c(x))
c(d(b(x))) → d(c(c(x)))
d(c(x)) → b(b(b(x)))
c(b(x)) → d(a(x))