YES
Termination Proof
Termination Proof
by ttt2 (version ttt2 1.15)
Input
The rewrite relation of the following TRS is considered.
R(x0) |
→ |
r(x0) |
r(p(x0)) |
→ |
p(p(r(P(x0)))) |
r(r(x0)) |
→ |
x0 |
r(P(P(x0))) |
→ |
P(P(r(x0))) |
p(P(x0)) |
→ |
x0 |
P(p(x0)) |
→ |
x0 |
r(R(x0)) |
→ |
x0 |
R(r(x0)) |
→ |
x0 |
Proof
1 Rule Removal
Using the
linear polynomial interpretation over the arctic semiring over the integers
[r(x1)] |
= |
8 ·
x1 +
-∞
|
[P(x1)] |
= |
0 ·
x1 +
-∞
|
[R(x1)] |
= |
8 ·
x1 +
-∞
|
[p(x1)] |
= |
0 ·
x1 +
-∞
|
the
rules
R(x0) |
→ |
r(x0) |
r(p(x0)) |
→ |
p(p(r(P(x0)))) |
r(P(P(x0))) |
→ |
P(P(r(x0))) |
p(P(x0)) |
→ |
x0 |
P(p(x0)) |
→ |
x0 |
remain.
1.1 Rule Removal
Using the
linear polynomial interpretation over the arctic semiring over the integers
[r(x1)] |
= |
1 ·
x1 +
-∞
|
[P(x1)] |
= |
0 ·
x1 +
-∞
|
[R(x1)] |
= |
10 ·
x1 +
-∞
|
[p(x1)] |
= |
0 ·
x1 +
-∞
|
the
rules
r(p(x0)) |
→ |
p(p(r(P(x0)))) |
r(P(P(x0))) |
→ |
P(P(r(x0))) |
p(P(x0)) |
→ |
x0 |
P(p(x0)) |
→ |
x0 |
remain.
1.1.1 String Reversal
Since only unary symbols occur, one can reverse all terms and obtains the TRS
p(r(x0)) |
→ |
P(r(p(p(x0)))) |
P(P(r(x0))) |
→ |
r(P(P(x0))) |
P(p(x0)) |
→ |
x0 |
p(P(x0)) |
→ |
x0 |
1.1.1.1 Bounds
The given TRS is
match-bounded by 0.
This is shown by the following automaton.
-
final states:
{2, 6, 1}
-
transitions:
5 |
→ |
4 |
1 |
→ |
3 |
1 |
→ |
4 |
6 |
→ |
8 |
6 |
→ |
7 |
2 |
→ |
7 |
2 |
→ |
3 |
2 |
→ |
8 |
2 |
→ |
4 |
f40
|
→ |
2 |
r0(8) |
→ |
6 |
r0(4) |
→ |
5 |
p0(2) |
→ |
3 |
p0(3) |
→ |
4 |
P0(5) |
→ |
1 |
P0(2) |
→ |
7 |
P0(7) |
→ |
8 |