YES
Termination Proof
Termination Proof
by ttt2 (version ttt2 1.15)
Input
The rewrite relation of the following TRS is considered.
P(x0) |
→ |
Q(Q(p(x0))) |
p(p(x0)) |
→ |
q(q(x0)) |
p(Q(Q(x0))) |
→ |
Q(Q(p(x0))) |
Q(p(q(x0))) |
→ |
q(p(Q(x0))) |
q(q(p(x0))) |
→ |
p(q(q(x0))) |
q(Q(x0)) |
→ |
x0 |
Q(q(x0)) |
→ |
x0 |
p(P(x0)) |
→ |
x0 |
P(p(x0)) |
→ |
x0 |
Proof
1 Rule Removal
Using the
linear polynomial interpretation over the arctic semiring over the integers
[p(x1)] |
= |
0 ·
x1 +
-∞
|
[q(x1)] |
= |
0 ·
x1 +
-∞
|
[P(x1)] |
= |
9 ·
x1 +
-∞
|
[Q(x1)] |
= |
0 ·
x1 +
-∞
|
the
rules
p(p(x0)) |
→ |
q(q(x0)) |
p(Q(Q(x0))) |
→ |
Q(Q(p(x0))) |
Q(p(q(x0))) |
→ |
q(p(Q(x0))) |
q(q(p(x0))) |
→ |
p(q(q(x0))) |
q(Q(x0)) |
→ |
x0 |
Q(q(x0)) |
→ |
x0 |
remain.
1.1 Rule Removal
Using the
linear polynomial interpretation over the arctic semiring over the integers
[p(x1)] |
= |
0 ·
x1 +
-∞
|
[q(x1)] |
= |
0 ·
x1 +
-∞
|
[Q(x1)] |
= |
1 ·
x1 +
-∞
|
the
rules
p(p(x0)) |
→ |
q(q(x0)) |
p(Q(Q(x0))) |
→ |
Q(Q(p(x0))) |
Q(p(q(x0))) |
→ |
q(p(Q(x0))) |
q(q(p(x0))) |
→ |
p(q(q(x0))) |
remain.
1.1.1 Rule Removal
Using the
linear polynomial interpretation over the arctic semiring over the integers
[p(x1)] |
= |
2 ·
x1 +
-∞
|
[q(x1)] |
= |
1 ·
x1 +
-∞
|
[Q(x1)] |
= |
4 ·
x1 +
-∞
|
the
rules
p(Q(Q(x0))) |
→ |
Q(Q(p(x0))) |
Q(p(q(x0))) |
→ |
q(p(Q(x0))) |
q(q(p(x0))) |
→ |
p(q(q(x0))) |
remain.
1.1.1.1 String Reversal
Since only unary symbols occur, one can reverse all terms and obtains the TRS
Q(Q(p(x0))) |
→ |
p(Q(Q(x0))) |
q(p(Q(x0))) |
→ |
Q(p(q(x0))) |
p(q(q(x0))) |
→ |
q(q(p(x0))) |
1.1.1.1.1 Bounds
The given TRS is
match-bounded by 0.
This is shown by the following automaton.
-
final states:
{8, 5, 1}
-
transitions:
5 |
→ |
10 |
5 |
→ |
6 |
1 |
→ |
4 |
1 |
→ |
3 |
8 |
→ |
7 |
8 |
→ |
9 |
Q0(3) |
→ |
4 |
Q0(7) |
→ |
5 |
Q0(2) |
→ |
3 |
f40
|
→ |
2 |
q0(2) |
→ |
6 |
q0(9) |
→ |
10 |
q0(10) |
→ |
8 |
p0(6) |
→ |
7 |
p0(2) |
→ |
9 |
p0(4) |
→ |
1 |