YES Termination w.r.t. Q proof of /home/cern_httpd/provide/research/cycsrs/tpdb/TPDB-d9b80194f163/SRS_Standard/Zantema_04/z067.srs

(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

P(x) → Q(Q(p(x)))
p(p(x)) → q(q(x))
p(Q(Q(x))) → Q(Q(p(x)))
Q(p(q(x))) → q(p(Q(x)))
q(q(p(x))) → p(q(q(x)))
q(Q(x)) → x
Q(q(x)) → x
p(P(x)) → x
P(p(x)) → x

Q is empty.

(1) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Polynomial interpretation [POLO]:

POL(P(x1)) = 2 + x1   
POL(Q(x1)) = 1 + x1   
POL(p(x1)) = x1   
POL(q(x1)) = x1   
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

q(Q(x)) → x
Q(q(x)) → x
p(P(x)) → x
P(p(x)) → x


(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

P(x) → Q(Q(p(x)))
p(p(x)) → q(q(x))
p(Q(Q(x))) → Q(Q(p(x)))
Q(p(q(x))) → q(p(Q(x)))
q(q(p(x))) → p(q(q(x)))

Q is empty.

(3) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Polynomial interpretation [POLO]:

POL(P(x1)) = 2 + x1   
POL(Q(x1)) = x1   
POL(p(x1)) = 1 + x1   
POL(q(x1)) = x1   
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

P(x) → Q(Q(p(x)))
p(p(x)) → q(q(x))


(4) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

p(Q(Q(x))) → Q(Q(p(x)))
Q(p(q(x))) → q(p(Q(x)))
q(q(p(x))) → p(q(q(x)))

Q is empty.

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P(Q(Q(x))) → Q1(Q(p(x)))
P(Q(Q(x))) → Q1(p(x))
P(Q(Q(x))) → P(x)
Q1(p(q(x))) → Q2(p(Q(x)))
Q1(p(q(x))) → P(Q(x))
Q1(p(q(x))) → Q1(x)
Q2(q(p(x))) → P(q(q(x)))
Q2(q(p(x))) → Q2(q(x))
Q2(q(p(x))) → Q2(x)

The TRS R consists of the following rules:

p(Q(Q(x))) → Q(Q(p(x)))
Q(p(q(x))) → q(p(Q(x)))
q(q(p(x))) → p(q(q(x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


Q1(p(q(x))) → Q1(x)
Q2(q(p(x))) → Q2(q(x))
Q2(q(p(x))) → Q2(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( P(x1) ) = 2x1 + 1

POL( Q1(x1) ) = x1

POL( Q2(x1) ) = x1

POL( Q(x1) ) = x1

POL( p(x1) ) = 2x1 + 1

POL( q(x1) ) = x1


The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

Q(p(q(x))) → q(p(Q(x)))
q(q(p(x))) → p(q(q(x)))
p(Q(Q(x))) → Q(Q(p(x)))

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P(Q(Q(x))) → Q1(Q(p(x)))
P(Q(Q(x))) → Q1(p(x))
P(Q(Q(x))) → P(x)
Q1(p(q(x))) → Q2(p(Q(x)))
Q1(p(q(x))) → P(Q(x))
Q2(q(p(x))) → P(q(q(x)))

The TRS R consists of the following rules:

p(Q(Q(x))) → Q(Q(p(x)))
Q(p(q(x))) → q(p(Q(x)))
q(q(p(x))) → p(q(q(x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(9) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


P(Q(Q(x))) → Q1(Q(p(x)))
P(Q(Q(x))) → Q1(p(x))
P(Q(Q(x))) → P(x)
Q1(p(q(x))) → P(Q(x))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( P(x1) ) = max{0, x1 - 2}

POL( Q1(x1) ) = max{0, 2x1 - 2}

POL( Q2(x1) ) = 2x1

POL( Q(x1) ) = 2x1 + 1

POL( p(x1) ) = x1

POL( q(x1) ) = 2x1 + 2


The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

Q(p(q(x))) → q(p(Q(x)))
q(q(p(x))) → p(q(q(x)))
p(Q(Q(x))) → Q(Q(p(x)))

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

Q1(p(q(x))) → Q2(p(Q(x)))
Q2(q(p(x))) → P(q(q(x)))

The TRS R consists of the following rules:

p(Q(Q(x))) → Q(Q(p(x)))
Q(p(q(x))) → q(p(Q(x)))
q(q(p(x))) → p(q(q(x)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(12) TRUE