YES
Termination Proof
Termination Proof
by ttt2 (version ttt2 1.15)
Input
The rewrite relation of the following TRS is considered.
a(b(x0)) |
→ |
b(c(a(x0))) |
b(c(x0)) |
→ |
c(b(b(x0))) |
b(a(x0)) |
→ |
a(c(b(x0))) |
Proof
1 Rule Removal
Using the
linear polynomial interpretation over (2 x 2)-matrices with strict dimension 1
over the arctic semiring over the integers
[a(x1)] |
= |
·
x1 +
|
[b(x1)] |
= |
·
x1 +
|
[c(x1)] |
= |
·
x1 +
|
the
rules
b(c(x0)) |
→ |
c(b(b(x0))) |
b(a(x0)) |
→ |
a(c(b(x0))) |
remain.
1.1 String Reversal
Since only unary symbols occur, one can reverse all terms and obtains the TRS
c(b(x0)) |
→ |
b(b(c(x0))) |
a(b(x0)) |
→ |
b(c(a(x0))) |
1.1.1 Dependency Pair Transformation
The following set of initial dependency pairs has been identified.
c#(b(x0)) |
→ |
c#(x0) |
a#(b(x0)) |
→ |
a#(x0) |
a#(b(x0)) |
→ |
c#(a(x0)) |
1.1.1.1 Dependency Graph Processor
The dependency pairs are split into 2
components.