YES
Termination Proof
Termination Proof
by ttt2 (version ttt2 1.15)
Input
The rewrite relation of the following TRS is considered.
a(b(x0)) |
→ |
b(b(a(x0))) |
b(c(x0)) |
→ |
c(b(b(x0))) |
c(a(x0)) |
→ |
a(c(c(x0))) |
Proof
1 String Reversal
Since only unary symbols occur, one can reverse all terms and obtains the TRS
b(a(x0)) |
→ |
a(b(b(x0))) |
c(b(x0)) |
→ |
b(b(c(x0))) |
a(c(x0)) |
→ |
c(c(a(x0))) |
1.1 Rule Removal
Using the
linear polynomial interpretation over the naturals
[a(x1)] |
= |
8 ·
x1 + 1 |
[b(x1)] |
= |
1 ·
x1 + 0 |
[c(x1)] |
= |
1 ·
x1 + 3 |
the
rules
b(a(x0)) |
→ |
a(b(b(x0))) |
c(b(x0)) |
→ |
b(b(c(x0))) |
remain.
1.1.1 String Reversal
Since only unary symbols occur, one can reverse all terms and obtains the TRS
a(b(x0)) |
→ |
b(b(a(x0))) |
b(c(x0)) |
→ |
c(b(b(x0))) |
1.1.1.1 Rule Removal
Using the
linear polynomial interpretation over (3 x 3)-matrices with strict dimension 1
over the naturals
[a(x1)] |
= |
·
x1 +
|
[b(x1)] |
= |
·
x1 +
|
[c(x1)] |
= |
·
x1 +
|
the
rule
remains.
1.1.1.1.1 Bounds
The given TRS is
match-bounded by 0.
This is shown by the following automaton.
-
final states:
{1}
-
transitions:
1 |
→ |
3 |
f30
|
→ |
2 |
b0(4) |
→ |
1 |
b0(3) |
→ |
4 |
a0(2) |
→ |
3 |