NO Termination w.r.t. Q proof of /home/cern_httpd/provide/research/cycsrs/tpdb/TPDB-d9b80194f163/SRS_Standard/Zantema_04/z009-rotate.srs

(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

begin(end(x)) → rewrite(end(x))
begin(a(x)) → rotate(cut(Ca(guess(x))))
begin(b(x)) → rotate(cut(Cb(guess(x))))
begin(c(x)) → rotate(cut(Cc(guess(x))))
begin(d(x)) → rotate(cut(Cd(guess(x))))
guess(a(x)) → Ca(guess(x))
guess(b(x)) → Cb(guess(x))
guess(c(x)) → Cc(guess(x))
guess(d(x)) → Cd(guess(x))
guess(a(x)) → moveleft(Ba(wait(x)))
guess(b(x)) → moveleft(Bb(wait(x)))
guess(c(x)) → moveleft(Bc(wait(x)))
guess(d(x)) → moveleft(Bd(wait(x)))
guess(end(x)) → finish(end(x))
Ca(moveleft(Ba(x))) → moveleft(Ba(Aa(x)))
Cb(moveleft(Ba(x))) → moveleft(Ba(Ab(x)))
Cc(moveleft(Ba(x))) → moveleft(Ba(Ac(x)))
Cd(moveleft(Ba(x))) → moveleft(Ba(Ad(x)))
Ca(moveleft(Bb(x))) → moveleft(Bb(Aa(x)))
Cb(moveleft(Bb(x))) → moveleft(Bb(Ab(x)))
Cc(moveleft(Bb(x))) → moveleft(Bb(Ac(x)))
Cd(moveleft(Bb(x))) → moveleft(Bb(Ad(x)))
Ca(moveleft(Bc(x))) → moveleft(Bc(Aa(x)))
Cb(moveleft(Bc(x))) → moveleft(Bc(Ab(x)))
Cc(moveleft(Bc(x))) → moveleft(Bc(Ac(x)))
Cd(moveleft(Bc(x))) → moveleft(Bc(Ad(x)))
Ca(moveleft(Bd(x))) → moveleft(Bd(Aa(x)))
Cb(moveleft(Bd(x))) → moveleft(Bd(Ab(x)))
Cc(moveleft(Bd(x))) → moveleft(Bd(Ac(x)))
Cd(moveleft(Bd(x))) → moveleft(Bd(Ad(x)))
cut(moveleft(Ba(x))) → Da(cut(goright(x)))
cut(moveleft(Bb(x))) → Db(cut(goright(x)))
cut(moveleft(Bc(x))) → Dc(cut(goright(x)))
cut(moveleft(Bd(x))) → Dd(cut(goright(x)))
goright(Aa(x)) → Ca(goright(x))
goright(Ab(x)) → Cb(goright(x))
goright(Ac(x)) → Cc(goright(x))
goright(Ad(x)) → Cd(goright(x))
goright(wait(a(x))) → moveleft(Ba(wait(x)))
goright(wait(b(x))) → moveleft(Bb(wait(x)))
goright(wait(c(x))) → moveleft(Bc(wait(x)))
goright(wait(d(x))) → moveleft(Bd(wait(x)))
goright(wait(end(x))) → finish(end(x))
Ca(finish(x)) → finish(a(x))
Cb(finish(x)) → finish(b(x))
Cc(finish(x)) → finish(c(x))
Cd(finish(x)) → finish(d(x))
cut(finish(x)) → finish2(x)
Da(finish2(x)) → finish2(a(x))
Db(finish2(x)) → finish2(b(x))
Dc(finish2(x)) → finish2(c(x))
Dd(finish2(x)) → finish2(d(x))
rotate(finish2(x)) → rewrite(x)
rewrite(a(x)) → begin(b(c(x)))
rewrite(a(b(x))) → begin(b(a(x)))
rewrite(d(c(x))) → begin(d(a(x)))
rewrite(a(c(x))) → begin(c(a(x)))

Q is empty.

(1) NonTerminationProof (COMPLETE transformation)

We used the non-termination processor [OPPELT08] to show that the SRS problem is infinite.

Found the self-embedding DerivationStructure:
rewrite a c endrewrite a c end

rewrite a c endrewrite a c end
by OverlapClosure OC 3
rewrite a c endrotate finish2 a c end
by OverlapClosure OC 3
rewrite a c endrotate Da finish2 c end
by OverlapClosure OC 3
rewrite a c endrotate Da cut finish c end
by OverlapClosure OC 3
rewrite a c endrotate Da cut Cc finish end
by OverlapClosure OC 2
rewrite a crotate Da cut Cc goright wait
by OverlapClosure OC 3
rewrite a crotate Da cut goright Ac wait
by OverlapClosure OC 3
rewrite a crotate cut moveleft Ba Ac wait
by OverlapClosure OC 3
rewrite a crotate cut Cc moveleft Ba wait
by OverlapClosure OC 2
rewrite a crotate cut Cc guess a
by OverlapClosure OC 3
rewrite a cbegin c a
by original rule (OC 1)
begin crotate cut Cc guess
by original rule (OC 1)
guess amoveleft Ba wait
by original rule (OC 1)
Cc moveleft Bamoveleft Ba Ac
by original rule (OC 1)
cut moveleft BaDa cut goright
by original rule (OC 1)
goright AcCc goright
by original rule (OC 1)
goright wait endfinish end
by original rule (OC 1)
Cc finishfinish c
by original rule (OC 1)
cut finishfinish2
by original rule (OC 1)
Da finish2finish2 a
by original rule (OC 1)
rotate finish2rewrite
by original rule (OC 1)

(2) NO