(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
a(x) → x
a(a(x)) → b(a(b(c(c(b(x))))))
c(b(x)) → a(x)
Q is empty.
(1) QTRS Reverse (EQUIVALENT transformation)
We applied the QTRS Reverse Processor [REVERSE].
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
a(x) → x
a(a(x)) → b(c(c(b(a(b(x))))))
b(c(x)) → a(x)
Q is empty.
(3) FlatCCProof (EQUIVALENT transformation)
We used flat context closure [ROOTLAB]
As Q is empty the flat context closure was sound AND complete.
(4) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
a(a(x)) → a(x)
b(a(x)) → b(x)
c(a(x)) → c(x)
a(a(a(x))) → a(b(c(c(b(a(b(x)))))))
b(a(a(x))) → b(b(c(c(b(a(b(x)))))))
c(a(a(x))) → c(b(c(c(b(a(b(x)))))))
a(b(c(x))) → a(a(x))
b(b(c(x))) → b(a(x))
c(b(c(x))) → c(a(x))
Q is empty.
(5) RootLabelingProof (EQUIVALENT transformation)
We used plain root labeling [ROOTLAB] with the following heuristic:
LabelAll: All function symbols get labeled
As Q is empty the root labeling was sound AND complete.
(6) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
a_{a_1}(a_{a_1}(x)) → a_{a_1}(x)
a_{a_1}(a_{b_1}(x)) → a_{b_1}(x)
a_{a_1}(a_{c_1}(x)) → a_{c_1}(x)
b_{a_1}(a_{a_1}(x)) → b_{a_1}(x)
b_{a_1}(a_{b_1}(x)) → b_{b_1}(x)
b_{a_1}(a_{c_1}(x)) → b_{c_1}(x)
c_{a_1}(a_{a_1}(x)) → c_{a_1}(x)
c_{a_1}(a_{b_1}(x)) → c_{b_1}(x)
c_{a_1}(a_{c_1}(x)) → c_{c_1}(x)
a_{a_1}(a_{a_1}(a_{a_1}(x))) → a_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{a_1}(x)))))))
a_{a_1}(a_{a_1}(a_{b_1}(x))) → a_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{b_1}(x)))))))
a_{a_1}(a_{a_1}(a_{c_1}(x))) → a_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{c_1}(x)))))))
b_{a_1}(a_{a_1}(a_{a_1}(x))) → b_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{a_1}(x)))))))
b_{a_1}(a_{a_1}(a_{b_1}(x))) → b_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{b_1}(x)))))))
b_{a_1}(a_{a_1}(a_{c_1}(x))) → b_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{c_1}(x)))))))
c_{a_1}(a_{a_1}(a_{a_1}(x))) → c_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{a_1}(x)))))))
c_{a_1}(a_{a_1}(a_{b_1}(x))) → c_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{b_1}(x)))))))
c_{a_1}(a_{a_1}(a_{c_1}(x))) → c_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{c_1}(x)))))))
a_{b_1}(b_{c_1}(c_{a_1}(x))) → a_{a_1}(a_{a_1}(x))
a_{b_1}(b_{c_1}(c_{b_1}(x))) → a_{a_1}(a_{b_1}(x))
a_{b_1}(b_{c_1}(c_{c_1}(x))) → a_{a_1}(a_{c_1}(x))
b_{b_1}(b_{c_1}(c_{a_1}(x))) → b_{a_1}(a_{a_1}(x))
b_{b_1}(b_{c_1}(c_{b_1}(x))) → b_{a_1}(a_{b_1}(x))
b_{b_1}(b_{c_1}(c_{c_1}(x))) → b_{a_1}(a_{c_1}(x))
c_{b_1}(b_{c_1}(c_{a_1}(x))) → c_{a_1}(a_{a_1}(x))
c_{b_1}(b_{c_1}(c_{b_1}(x))) → c_{a_1}(a_{b_1}(x))
c_{b_1}(b_{c_1}(c_{c_1}(x))) → c_{a_1}(a_{c_1}(x))
Q is empty.
(7) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(8) Obligation:
Q DP problem:
The TRS P consists of the following rules:
B_{A_1}(a_{a_1}(x)) → B_{A_1}(x)
B_{A_1}(a_{b_1}(x)) → B_{B_1}(x)
C_{A_1}(a_{a_1}(x)) → C_{A_1}(x)
C_{A_1}(a_{b_1}(x)) → C_{B_1}(x)
A_{A_1}(a_{a_1}(a_{a_1}(x))) → A_{B_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{a_1}(x)))))))
A_{A_1}(a_{a_1}(a_{a_1}(x))) → C_{B_1}(b_{a_1}(a_{b_1}(b_{a_1}(x))))
A_{A_1}(a_{a_1}(a_{a_1}(x))) → B_{A_1}(a_{b_1}(b_{a_1}(x)))
A_{A_1}(a_{a_1}(a_{a_1}(x))) → A_{B_1}(b_{a_1}(x))
A_{A_1}(a_{a_1}(a_{a_1}(x))) → B_{A_1}(x)
A_{A_1}(a_{a_1}(a_{b_1}(x))) → A_{B_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{b_1}(x)))))))
A_{A_1}(a_{a_1}(a_{b_1}(x))) → C_{B_1}(b_{a_1}(a_{b_1}(b_{b_1}(x))))
A_{A_1}(a_{a_1}(a_{b_1}(x))) → B_{A_1}(a_{b_1}(b_{b_1}(x)))
A_{A_1}(a_{a_1}(a_{b_1}(x))) → A_{B_1}(b_{b_1}(x))
A_{A_1}(a_{a_1}(a_{b_1}(x))) → B_{B_1}(x)
A_{A_1}(a_{a_1}(a_{c_1}(x))) → A_{B_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{c_1}(x)))))))
A_{A_1}(a_{a_1}(a_{c_1}(x))) → C_{B_1}(b_{a_1}(a_{b_1}(b_{c_1}(x))))
A_{A_1}(a_{a_1}(a_{c_1}(x))) → B_{A_1}(a_{b_1}(b_{c_1}(x)))
A_{A_1}(a_{a_1}(a_{c_1}(x))) → A_{B_1}(b_{c_1}(x))
B_{A_1}(a_{a_1}(a_{a_1}(x))) → B_{B_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{a_1}(x)))))))
B_{A_1}(a_{a_1}(a_{a_1}(x))) → C_{B_1}(b_{a_1}(a_{b_1}(b_{a_1}(x))))
B_{A_1}(a_{a_1}(a_{a_1}(x))) → B_{A_1}(a_{b_1}(b_{a_1}(x)))
B_{A_1}(a_{a_1}(a_{a_1}(x))) → A_{B_1}(b_{a_1}(x))
B_{A_1}(a_{a_1}(a_{a_1}(x))) → B_{A_1}(x)
B_{A_1}(a_{a_1}(a_{b_1}(x))) → B_{B_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{b_1}(x)))))))
B_{A_1}(a_{a_1}(a_{b_1}(x))) → C_{B_1}(b_{a_1}(a_{b_1}(b_{b_1}(x))))
B_{A_1}(a_{a_1}(a_{b_1}(x))) → B_{A_1}(a_{b_1}(b_{b_1}(x)))
B_{A_1}(a_{a_1}(a_{b_1}(x))) → A_{B_1}(b_{b_1}(x))
B_{A_1}(a_{a_1}(a_{b_1}(x))) → B_{B_1}(x)
B_{A_1}(a_{a_1}(a_{c_1}(x))) → B_{B_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{c_1}(x)))))))
B_{A_1}(a_{a_1}(a_{c_1}(x))) → C_{B_1}(b_{a_1}(a_{b_1}(b_{c_1}(x))))
B_{A_1}(a_{a_1}(a_{c_1}(x))) → B_{A_1}(a_{b_1}(b_{c_1}(x)))
B_{A_1}(a_{a_1}(a_{c_1}(x))) → A_{B_1}(b_{c_1}(x))
C_{A_1}(a_{a_1}(a_{a_1}(x))) → C_{B_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{a_1}(x)))))))
C_{A_1}(a_{a_1}(a_{a_1}(x))) → C_{B_1}(b_{a_1}(a_{b_1}(b_{a_1}(x))))
C_{A_1}(a_{a_1}(a_{a_1}(x))) → B_{A_1}(a_{b_1}(b_{a_1}(x)))
C_{A_1}(a_{a_1}(a_{a_1}(x))) → A_{B_1}(b_{a_1}(x))
C_{A_1}(a_{a_1}(a_{a_1}(x))) → B_{A_1}(x)
C_{A_1}(a_{a_1}(a_{b_1}(x))) → C_{B_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{b_1}(x)))))))
C_{A_1}(a_{a_1}(a_{b_1}(x))) → C_{B_1}(b_{a_1}(a_{b_1}(b_{b_1}(x))))
C_{A_1}(a_{a_1}(a_{b_1}(x))) → B_{A_1}(a_{b_1}(b_{b_1}(x)))
C_{A_1}(a_{a_1}(a_{b_1}(x))) → A_{B_1}(b_{b_1}(x))
C_{A_1}(a_{a_1}(a_{b_1}(x))) → B_{B_1}(x)
C_{A_1}(a_{a_1}(a_{c_1}(x))) → C_{B_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{c_1}(x)))))))
C_{A_1}(a_{a_1}(a_{c_1}(x))) → C_{B_1}(b_{a_1}(a_{b_1}(b_{c_1}(x))))
C_{A_1}(a_{a_1}(a_{c_1}(x))) → B_{A_1}(a_{b_1}(b_{c_1}(x)))
C_{A_1}(a_{a_1}(a_{c_1}(x))) → A_{B_1}(b_{c_1}(x))
A_{B_1}(b_{c_1}(c_{a_1}(x))) → A_{A_1}(a_{a_1}(x))
A_{B_1}(b_{c_1}(c_{a_1}(x))) → A_{A_1}(x)
A_{B_1}(b_{c_1}(c_{b_1}(x))) → A_{A_1}(a_{b_1}(x))
A_{B_1}(b_{c_1}(c_{b_1}(x))) → A_{B_1}(x)
A_{B_1}(b_{c_1}(c_{c_1}(x))) → A_{A_1}(a_{c_1}(x))
B_{B_1}(b_{c_1}(c_{a_1}(x))) → B_{A_1}(a_{a_1}(x))
B_{B_1}(b_{c_1}(c_{a_1}(x))) → A_{A_1}(x)
B_{B_1}(b_{c_1}(c_{b_1}(x))) → B_{A_1}(a_{b_1}(x))
B_{B_1}(b_{c_1}(c_{b_1}(x))) → A_{B_1}(x)
B_{B_1}(b_{c_1}(c_{c_1}(x))) → B_{A_1}(a_{c_1}(x))
C_{B_1}(b_{c_1}(c_{a_1}(x))) → C_{A_1}(a_{a_1}(x))
C_{B_1}(b_{c_1}(c_{a_1}(x))) → A_{A_1}(x)
C_{B_1}(b_{c_1}(c_{b_1}(x))) → C_{A_1}(a_{b_1}(x))
C_{B_1}(b_{c_1}(c_{b_1}(x))) → A_{B_1}(x)
C_{B_1}(b_{c_1}(c_{c_1}(x))) → C_{A_1}(a_{c_1}(x))
The TRS R consists of the following rules:
a_{a_1}(a_{a_1}(x)) → a_{a_1}(x)
a_{a_1}(a_{b_1}(x)) → a_{b_1}(x)
a_{a_1}(a_{c_1}(x)) → a_{c_1}(x)
b_{a_1}(a_{a_1}(x)) → b_{a_1}(x)
b_{a_1}(a_{b_1}(x)) → b_{b_1}(x)
b_{a_1}(a_{c_1}(x)) → b_{c_1}(x)
c_{a_1}(a_{a_1}(x)) → c_{a_1}(x)
c_{a_1}(a_{b_1}(x)) → c_{b_1}(x)
c_{a_1}(a_{c_1}(x)) → c_{c_1}(x)
a_{a_1}(a_{a_1}(a_{a_1}(x))) → a_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{a_1}(x)))))))
a_{a_1}(a_{a_1}(a_{b_1}(x))) → a_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{b_1}(x)))))))
a_{a_1}(a_{a_1}(a_{c_1}(x))) → a_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{c_1}(x)))))))
b_{a_1}(a_{a_1}(a_{a_1}(x))) → b_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{a_1}(x)))))))
b_{a_1}(a_{a_1}(a_{b_1}(x))) → b_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{b_1}(x)))))))
b_{a_1}(a_{a_1}(a_{c_1}(x))) → b_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{c_1}(x)))))))
c_{a_1}(a_{a_1}(a_{a_1}(x))) → c_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{a_1}(x)))))))
c_{a_1}(a_{a_1}(a_{b_1}(x))) → c_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{b_1}(x)))))))
c_{a_1}(a_{a_1}(a_{c_1}(x))) → c_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{c_1}(x)))))))
a_{b_1}(b_{c_1}(c_{a_1}(x))) → a_{a_1}(a_{a_1}(x))
a_{b_1}(b_{c_1}(c_{b_1}(x))) → a_{a_1}(a_{b_1}(x))
a_{b_1}(b_{c_1}(c_{c_1}(x))) → a_{a_1}(a_{c_1}(x))
b_{b_1}(b_{c_1}(c_{a_1}(x))) → b_{a_1}(a_{a_1}(x))
b_{b_1}(b_{c_1}(c_{b_1}(x))) → b_{a_1}(a_{b_1}(x))
b_{b_1}(b_{c_1}(c_{c_1}(x))) → b_{a_1}(a_{c_1}(x))
c_{b_1}(b_{c_1}(c_{a_1}(x))) → c_{a_1}(a_{a_1}(x))
c_{b_1}(b_{c_1}(c_{b_1}(x))) → c_{a_1}(a_{b_1}(x))
c_{b_1}(b_{c_1}(c_{c_1}(x))) → c_{a_1}(a_{c_1}(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(9) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 12 less nodes.
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
B_{A_1}(a_{b_1}(x)) → B_{B_1}(x)
B_{B_1}(b_{c_1}(c_{a_1}(x))) → B_{A_1}(a_{a_1}(x))
B_{A_1}(a_{a_1}(x)) → B_{A_1}(x)
B_{A_1}(a_{a_1}(a_{a_1}(x))) → C_{B_1}(b_{a_1}(a_{b_1}(b_{a_1}(x))))
C_{B_1}(b_{c_1}(c_{a_1}(x))) → C_{A_1}(a_{a_1}(x))
C_{A_1}(a_{a_1}(x)) → C_{A_1}(x)
C_{A_1}(a_{b_1}(x)) → C_{B_1}(x)
C_{B_1}(b_{c_1}(c_{a_1}(x))) → A_{A_1}(x)
A_{A_1}(a_{a_1}(a_{a_1}(x))) → C_{B_1}(b_{a_1}(a_{b_1}(b_{a_1}(x))))
C_{B_1}(b_{c_1}(c_{b_1}(x))) → C_{A_1}(a_{b_1}(x))
C_{A_1}(a_{a_1}(a_{a_1}(x))) → C_{B_1}(b_{a_1}(a_{b_1}(b_{a_1}(x))))
C_{B_1}(b_{c_1}(c_{b_1}(x))) → A_{B_1}(x)
A_{B_1}(b_{c_1}(c_{a_1}(x))) → A_{A_1}(a_{a_1}(x))
A_{A_1}(a_{a_1}(a_{a_1}(x))) → B_{A_1}(a_{b_1}(b_{a_1}(x)))
B_{A_1}(a_{a_1}(a_{a_1}(x))) → B_{A_1}(a_{b_1}(b_{a_1}(x)))
B_{A_1}(a_{a_1}(a_{a_1}(x))) → A_{B_1}(b_{a_1}(x))
A_{B_1}(b_{c_1}(c_{a_1}(x))) → A_{A_1}(x)
A_{A_1}(a_{a_1}(a_{a_1}(x))) → A_{B_1}(b_{a_1}(x))
A_{B_1}(b_{c_1}(c_{b_1}(x))) → A_{A_1}(a_{b_1}(x))
A_{A_1}(a_{a_1}(a_{a_1}(x))) → B_{A_1}(x)
B_{A_1}(a_{a_1}(a_{a_1}(x))) → B_{A_1}(x)
B_{A_1}(a_{a_1}(a_{b_1}(x))) → C_{B_1}(b_{a_1}(a_{b_1}(b_{b_1}(x))))
B_{A_1}(a_{a_1}(a_{b_1}(x))) → B_{A_1}(a_{b_1}(b_{b_1}(x)))
B_{A_1}(a_{a_1}(a_{b_1}(x))) → A_{B_1}(b_{b_1}(x))
A_{B_1}(b_{c_1}(c_{b_1}(x))) → A_{B_1}(x)
B_{A_1}(a_{a_1}(a_{b_1}(x))) → B_{B_1}(x)
B_{B_1}(b_{c_1}(c_{a_1}(x))) → A_{A_1}(x)
A_{A_1}(a_{a_1}(a_{b_1}(x))) → C_{B_1}(b_{a_1}(a_{b_1}(b_{b_1}(x))))
A_{A_1}(a_{a_1}(a_{b_1}(x))) → B_{A_1}(a_{b_1}(b_{b_1}(x)))
B_{A_1}(a_{a_1}(a_{c_1}(x))) → C_{B_1}(b_{a_1}(a_{b_1}(b_{c_1}(x))))
B_{A_1}(a_{a_1}(a_{c_1}(x))) → B_{A_1}(a_{b_1}(b_{c_1}(x)))
B_{A_1}(a_{a_1}(a_{c_1}(x))) → A_{B_1}(b_{c_1}(x))
A_{A_1}(a_{a_1}(a_{b_1}(x))) → A_{B_1}(b_{b_1}(x))
A_{A_1}(a_{a_1}(a_{b_1}(x))) → B_{B_1}(x)
B_{B_1}(b_{c_1}(c_{b_1}(x))) → B_{A_1}(a_{b_1}(x))
B_{B_1}(b_{c_1}(c_{b_1}(x))) → A_{B_1}(x)
A_{A_1}(a_{a_1}(a_{c_1}(x))) → C_{B_1}(b_{a_1}(a_{b_1}(b_{c_1}(x))))
A_{A_1}(a_{a_1}(a_{c_1}(x))) → B_{A_1}(a_{b_1}(b_{c_1}(x)))
A_{A_1}(a_{a_1}(a_{c_1}(x))) → A_{B_1}(b_{c_1}(x))
C_{A_1}(a_{a_1}(a_{a_1}(x))) → B_{A_1}(a_{b_1}(b_{a_1}(x)))
C_{A_1}(a_{a_1}(a_{a_1}(x))) → A_{B_1}(b_{a_1}(x))
C_{A_1}(a_{a_1}(a_{a_1}(x))) → B_{A_1}(x)
C_{A_1}(a_{a_1}(a_{b_1}(x))) → C_{B_1}(b_{a_1}(a_{b_1}(b_{b_1}(x))))
C_{A_1}(a_{a_1}(a_{b_1}(x))) → B_{A_1}(a_{b_1}(b_{b_1}(x)))
C_{A_1}(a_{a_1}(a_{b_1}(x))) → A_{B_1}(b_{b_1}(x))
C_{A_1}(a_{a_1}(a_{b_1}(x))) → B_{B_1}(x)
C_{A_1}(a_{a_1}(a_{c_1}(x))) → C_{B_1}(b_{a_1}(a_{b_1}(b_{c_1}(x))))
C_{A_1}(a_{a_1}(a_{c_1}(x))) → B_{A_1}(a_{b_1}(b_{c_1}(x)))
C_{A_1}(a_{a_1}(a_{c_1}(x))) → A_{B_1}(b_{c_1}(x))
The TRS R consists of the following rules:
a_{a_1}(a_{a_1}(x)) → a_{a_1}(x)
a_{a_1}(a_{b_1}(x)) → a_{b_1}(x)
a_{a_1}(a_{c_1}(x)) → a_{c_1}(x)
b_{a_1}(a_{a_1}(x)) → b_{a_1}(x)
b_{a_1}(a_{b_1}(x)) → b_{b_1}(x)
b_{a_1}(a_{c_1}(x)) → b_{c_1}(x)
c_{a_1}(a_{a_1}(x)) → c_{a_1}(x)
c_{a_1}(a_{b_1}(x)) → c_{b_1}(x)
c_{a_1}(a_{c_1}(x)) → c_{c_1}(x)
a_{a_1}(a_{a_1}(a_{a_1}(x))) → a_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{a_1}(x)))))))
a_{a_1}(a_{a_1}(a_{b_1}(x))) → a_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{b_1}(x)))))))
a_{a_1}(a_{a_1}(a_{c_1}(x))) → a_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{c_1}(x)))))))
b_{a_1}(a_{a_1}(a_{a_1}(x))) → b_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{a_1}(x)))))))
b_{a_1}(a_{a_1}(a_{b_1}(x))) → b_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{b_1}(x)))))))
b_{a_1}(a_{a_1}(a_{c_1}(x))) → b_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{c_1}(x)))))))
c_{a_1}(a_{a_1}(a_{a_1}(x))) → c_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{a_1}(x)))))))
c_{a_1}(a_{a_1}(a_{b_1}(x))) → c_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{b_1}(x)))))))
c_{a_1}(a_{a_1}(a_{c_1}(x))) → c_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{c_1}(x)))))))
a_{b_1}(b_{c_1}(c_{a_1}(x))) → a_{a_1}(a_{a_1}(x))
a_{b_1}(b_{c_1}(c_{b_1}(x))) → a_{a_1}(a_{b_1}(x))
a_{b_1}(b_{c_1}(c_{c_1}(x))) → a_{a_1}(a_{c_1}(x))
b_{b_1}(b_{c_1}(c_{a_1}(x))) → b_{a_1}(a_{a_1}(x))
b_{b_1}(b_{c_1}(c_{b_1}(x))) → b_{a_1}(a_{b_1}(x))
b_{b_1}(b_{c_1}(c_{c_1}(x))) → b_{a_1}(a_{c_1}(x))
c_{b_1}(b_{c_1}(c_{a_1}(x))) → c_{a_1}(a_{a_1}(x))
c_{b_1}(b_{c_1}(c_{b_1}(x))) → c_{a_1}(a_{b_1}(x))
c_{b_1}(b_{c_1}(c_{c_1}(x))) → c_{a_1}(a_{c_1}(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(11) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
B_{B_1}(b_{c_1}(c_{a_1}(x))) → B_{A_1}(a_{a_1}(x))
B_{A_1}(a_{a_1}(a_{a_1}(x))) → C_{B_1}(b_{a_1}(a_{b_1}(b_{a_1}(x))))
C_{B_1}(b_{c_1}(c_{a_1}(x))) → C_{A_1}(a_{a_1}(x))
C_{B_1}(b_{c_1}(c_{a_1}(x))) → A_{A_1}(x)
A_{A_1}(a_{a_1}(a_{a_1}(x))) → C_{B_1}(b_{a_1}(a_{b_1}(b_{a_1}(x))))
C_{B_1}(b_{c_1}(c_{b_1}(x))) → C_{A_1}(a_{b_1}(x))
C_{A_1}(a_{a_1}(a_{a_1}(x))) → C_{B_1}(b_{a_1}(a_{b_1}(b_{a_1}(x))))
C_{B_1}(b_{c_1}(c_{b_1}(x))) → A_{B_1}(x)
A_{B_1}(b_{c_1}(c_{a_1}(x))) → A_{A_1}(a_{a_1}(x))
A_{A_1}(a_{a_1}(a_{a_1}(x))) → B_{A_1}(a_{b_1}(b_{a_1}(x)))
B_{A_1}(a_{a_1}(a_{a_1}(x))) → B_{A_1}(a_{b_1}(b_{a_1}(x)))
B_{A_1}(a_{a_1}(a_{a_1}(x))) → A_{B_1}(b_{a_1}(x))
A_{B_1}(b_{c_1}(c_{a_1}(x))) → A_{A_1}(x)
A_{A_1}(a_{a_1}(a_{a_1}(x))) → A_{B_1}(b_{a_1}(x))
A_{B_1}(b_{c_1}(c_{b_1}(x))) → A_{A_1}(a_{b_1}(x))
A_{A_1}(a_{a_1}(a_{a_1}(x))) → B_{A_1}(x)
B_{A_1}(a_{a_1}(a_{a_1}(x))) → B_{A_1}(x)
B_{A_1}(a_{a_1}(a_{b_1}(x))) → C_{B_1}(b_{a_1}(a_{b_1}(b_{b_1}(x))))
B_{A_1}(a_{a_1}(a_{b_1}(x))) → B_{A_1}(a_{b_1}(b_{b_1}(x)))
B_{A_1}(a_{a_1}(a_{b_1}(x))) → A_{B_1}(b_{b_1}(x))
A_{B_1}(b_{c_1}(c_{b_1}(x))) → A_{B_1}(x)
B_{A_1}(a_{a_1}(a_{b_1}(x))) → B_{B_1}(x)
B_{B_1}(b_{c_1}(c_{a_1}(x))) → A_{A_1}(x)
A_{A_1}(a_{a_1}(a_{b_1}(x))) → C_{B_1}(b_{a_1}(a_{b_1}(b_{b_1}(x))))
A_{A_1}(a_{a_1}(a_{b_1}(x))) → B_{A_1}(a_{b_1}(b_{b_1}(x)))
B_{A_1}(a_{a_1}(a_{c_1}(x))) → C_{B_1}(b_{a_1}(a_{b_1}(b_{c_1}(x))))
B_{A_1}(a_{a_1}(a_{c_1}(x))) → B_{A_1}(a_{b_1}(b_{c_1}(x)))
B_{A_1}(a_{a_1}(a_{c_1}(x))) → A_{B_1}(b_{c_1}(x))
A_{A_1}(a_{a_1}(a_{b_1}(x))) → A_{B_1}(b_{b_1}(x))
A_{A_1}(a_{a_1}(a_{b_1}(x))) → B_{B_1}(x)
B_{B_1}(b_{c_1}(c_{b_1}(x))) → B_{A_1}(a_{b_1}(x))
B_{B_1}(b_{c_1}(c_{b_1}(x))) → A_{B_1}(x)
A_{A_1}(a_{a_1}(a_{c_1}(x))) → C_{B_1}(b_{a_1}(a_{b_1}(b_{c_1}(x))))
A_{A_1}(a_{a_1}(a_{c_1}(x))) → B_{A_1}(a_{b_1}(b_{c_1}(x)))
A_{A_1}(a_{a_1}(a_{c_1}(x))) → A_{B_1}(b_{c_1}(x))
C_{A_1}(a_{a_1}(a_{a_1}(x))) → B_{A_1}(a_{b_1}(b_{a_1}(x)))
C_{A_1}(a_{a_1}(a_{a_1}(x))) → A_{B_1}(b_{a_1}(x))
C_{A_1}(a_{a_1}(a_{a_1}(x))) → B_{A_1}(x)
C_{A_1}(a_{a_1}(a_{b_1}(x))) → C_{B_1}(b_{a_1}(a_{b_1}(b_{b_1}(x))))
C_{A_1}(a_{a_1}(a_{b_1}(x))) → B_{A_1}(a_{b_1}(b_{b_1}(x)))
C_{A_1}(a_{a_1}(a_{b_1}(x))) → A_{B_1}(b_{b_1}(x))
C_{A_1}(a_{a_1}(a_{b_1}(x))) → B_{B_1}(x)
C_{A_1}(a_{a_1}(a_{c_1}(x))) → C_{B_1}(b_{a_1}(a_{b_1}(b_{c_1}(x))))
C_{A_1}(a_{a_1}(a_{c_1}(x))) → B_{A_1}(a_{b_1}(b_{c_1}(x)))
C_{A_1}(a_{a_1}(a_{c_1}(x))) → A_{B_1}(b_{c_1}(x))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( B_{A_1}(x1) ) = max{0, x1 - 2} |
POL( C_{A_1}(x1) ) = max{0, x1 - 2} |
POL( A_{B_1}(x1) ) = x1 + 1 |
POL( b_{a_1}(x1) ) = max{0, x1 - 2} |
POL( b_{b_1}(x1) ) = max{0, x1 - 2} |
POL( c_{a_1}(x1) ) = x1 + 2 |
POL( c_{c_1}(x1) ) = x1 + 2 |
POL( a_{a_1}(x1) ) = x1 + 2 |
POL( a_{b_1}(x1) ) = x1 + 2 |
POL( c_{b_1}(x1) ) = x1 + 2 |
POL( a_{c_1}(x1) ) = x1 + 2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
a_{a_1}(a_{b_1}(x)) → a_{b_1}(x)
a_{b_1}(b_{c_1}(c_{a_1}(x))) → a_{a_1}(a_{a_1}(x))
a_{a_1}(a_{a_1}(x)) → a_{a_1}(x)
a_{b_1}(b_{c_1}(c_{b_1}(x))) → a_{a_1}(a_{b_1}(x))
a_{a_1}(a_{c_1}(x)) → a_{c_1}(x)
a_{a_1}(a_{a_1}(a_{a_1}(x))) → a_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{a_1}(x)))))))
a_{a_1}(a_{a_1}(a_{b_1}(x))) → a_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{b_1}(x)))))))
a_{a_1}(a_{a_1}(a_{c_1}(x))) → a_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{c_1}(x)))))))
b_{a_1}(a_{b_1}(x)) → b_{b_1}(x)
b_{b_1}(b_{c_1}(c_{a_1}(x))) → b_{a_1}(a_{a_1}(x))
b_{a_1}(a_{a_1}(x)) → b_{a_1}(x)
b_{b_1}(b_{c_1}(c_{b_1}(x))) → b_{a_1}(a_{b_1}(x))
b_{a_1}(a_{c_1}(x)) → b_{c_1}(x)
b_{a_1}(a_{a_1}(a_{a_1}(x))) → b_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{a_1}(x)))))))
b_{a_1}(a_{a_1}(a_{b_1}(x))) → b_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{b_1}(x)))))))
b_{a_1}(a_{a_1}(a_{c_1}(x))) → b_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{c_1}(x)))))))
a_{b_1}(b_{c_1}(c_{c_1}(x))) → a_{a_1}(a_{c_1}(x))
b_{b_1}(b_{c_1}(c_{c_1}(x))) → b_{a_1}(a_{c_1}(x))
c_{a_1}(a_{b_1}(x)) → c_{b_1}(x)
c_{b_1}(b_{c_1}(c_{a_1}(x))) → c_{a_1}(a_{a_1}(x))
c_{a_1}(a_{a_1}(x)) → c_{a_1}(x)
c_{b_1}(b_{c_1}(c_{b_1}(x))) → c_{a_1}(a_{b_1}(x))
c_{a_1}(a_{a_1}(a_{a_1}(x))) → c_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{a_1}(x)))))))
c_{a_1}(a_{a_1}(a_{b_1}(x))) → c_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{b_1}(x)))))))
c_{a_1}(a_{a_1}(a_{c_1}(x))) → c_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{c_1}(x)))))))
c_{b_1}(b_{c_1}(c_{c_1}(x))) → c_{a_1}(a_{c_1}(x))
c_{a_1}(a_{c_1}(x)) → c_{c_1}(x)
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
B_{A_1}(a_{b_1}(x)) → B_{B_1}(x)
B_{A_1}(a_{a_1}(x)) → B_{A_1}(x)
C_{A_1}(a_{a_1}(x)) → C_{A_1}(x)
C_{A_1}(a_{b_1}(x)) → C_{B_1}(x)
The TRS R consists of the following rules:
a_{a_1}(a_{a_1}(x)) → a_{a_1}(x)
a_{a_1}(a_{b_1}(x)) → a_{b_1}(x)
a_{a_1}(a_{c_1}(x)) → a_{c_1}(x)
b_{a_1}(a_{a_1}(x)) → b_{a_1}(x)
b_{a_1}(a_{b_1}(x)) → b_{b_1}(x)
b_{a_1}(a_{c_1}(x)) → b_{c_1}(x)
c_{a_1}(a_{a_1}(x)) → c_{a_1}(x)
c_{a_1}(a_{b_1}(x)) → c_{b_1}(x)
c_{a_1}(a_{c_1}(x)) → c_{c_1}(x)
a_{a_1}(a_{a_1}(a_{a_1}(x))) → a_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{a_1}(x)))))))
a_{a_1}(a_{a_1}(a_{b_1}(x))) → a_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{b_1}(x)))))))
a_{a_1}(a_{a_1}(a_{c_1}(x))) → a_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{c_1}(x)))))))
b_{a_1}(a_{a_1}(a_{a_1}(x))) → b_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{a_1}(x)))))))
b_{a_1}(a_{a_1}(a_{b_1}(x))) → b_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{b_1}(x)))))))
b_{a_1}(a_{a_1}(a_{c_1}(x))) → b_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{c_1}(x)))))))
c_{a_1}(a_{a_1}(a_{a_1}(x))) → c_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{a_1}(x)))))))
c_{a_1}(a_{a_1}(a_{b_1}(x))) → c_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{b_1}(x)))))))
c_{a_1}(a_{a_1}(a_{c_1}(x))) → c_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{c_1}(x)))))))
a_{b_1}(b_{c_1}(c_{a_1}(x))) → a_{a_1}(a_{a_1}(x))
a_{b_1}(b_{c_1}(c_{b_1}(x))) → a_{a_1}(a_{b_1}(x))
a_{b_1}(b_{c_1}(c_{c_1}(x))) → a_{a_1}(a_{c_1}(x))
b_{b_1}(b_{c_1}(c_{a_1}(x))) → b_{a_1}(a_{a_1}(x))
b_{b_1}(b_{c_1}(c_{b_1}(x))) → b_{a_1}(a_{b_1}(x))
b_{b_1}(b_{c_1}(c_{c_1}(x))) → b_{a_1}(a_{c_1}(x))
c_{b_1}(b_{c_1}(c_{a_1}(x))) → c_{a_1}(a_{a_1}(x))
c_{b_1}(b_{c_1}(c_{b_1}(x))) → c_{a_1}(a_{b_1}(x))
c_{b_1}(b_{c_1}(c_{c_1}(x))) → c_{a_1}(a_{c_1}(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(13) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 2 less nodes.
(14) Complex Obligation (AND)
(15) Obligation:
Q DP problem:
The TRS P consists of the following rules:
C_{A_1}(a_{a_1}(x)) → C_{A_1}(x)
The TRS R consists of the following rules:
a_{a_1}(a_{a_1}(x)) → a_{a_1}(x)
a_{a_1}(a_{b_1}(x)) → a_{b_1}(x)
a_{a_1}(a_{c_1}(x)) → a_{c_1}(x)
b_{a_1}(a_{a_1}(x)) → b_{a_1}(x)
b_{a_1}(a_{b_1}(x)) → b_{b_1}(x)
b_{a_1}(a_{c_1}(x)) → b_{c_1}(x)
c_{a_1}(a_{a_1}(x)) → c_{a_1}(x)
c_{a_1}(a_{b_1}(x)) → c_{b_1}(x)
c_{a_1}(a_{c_1}(x)) → c_{c_1}(x)
a_{a_1}(a_{a_1}(a_{a_1}(x))) → a_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{a_1}(x)))))))
a_{a_1}(a_{a_1}(a_{b_1}(x))) → a_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{b_1}(x)))))))
a_{a_1}(a_{a_1}(a_{c_1}(x))) → a_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{c_1}(x)))))))
b_{a_1}(a_{a_1}(a_{a_1}(x))) → b_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{a_1}(x)))))))
b_{a_1}(a_{a_1}(a_{b_1}(x))) → b_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{b_1}(x)))))))
b_{a_1}(a_{a_1}(a_{c_1}(x))) → b_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{c_1}(x)))))))
c_{a_1}(a_{a_1}(a_{a_1}(x))) → c_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{a_1}(x)))))))
c_{a_1}(a_{a_1}(a_{b_1}(x))) → c_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{b_1}(x)))))))
c_{a_1}(a_{a_1}(a_{c_1}(x))) → c_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{c_1}(x)))))))
a_{b_1}(b_{c_1}(c_{a_1}(x))) → a_{a_1}(a_{a_1}(x))
a_{b_1}(b_{c_1}(c_{b_1}(x))) → a_{a_1}(a_{b_1}(x))
a_{b_1}(b_{c_1}(c_{c_1}(x))) → a_{a_1}(a_{c_1}(x))
b_{b_1}(b_{c_1}(c_{a_1}(x))) → b_{a_1}(a_{a_1}(x))
b_{b_1}(b_{c_1}(c_{b_1}(x))) → b_{a_1}(a_{b_1}(x))
b_{b_1}(b_{c_1}(c_{c_1}(x))) → b_{a_1}(a_{c_1}(x))
c_{b_1}(b_{c_1}(c_{a_1}(x))) → c_{a_1}(a_{a_1}(x))
c_{b_1}(b_{c_1}(c_{b_1}(x))) → c_{a_1}(a_{b_1}(x))
c_{b_1}(b_{c_1}(c_{c_1}(x))) → c_{a_1}(a_{c_1}(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(16) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(17) Obligation:
Q DP problem:
The TRS P consists of the following rules:
C_{A_1}(a_{a_1}(x)) → C_{A_1}(x)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(18) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- C_{A_1}(a_{a_1}(x)) → C_{A_1}(x)
The graph contains the following edges 1 > 1
(19) YES
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
B_{A_1}(a_{a_1}(x)) → B_{A_1}(x)
The TRS R consists of the following rules:
a_{a_1}(a_{a_1}(x)) → a_{a_1}(x)
a_{a_1}(a_{b_1}(x)) → a_{b_1}(x)
a_{a_1}(a_{c_1}(x)) → a_{c_1}(x)
b_{a_1}(a_{a_1}(x)) → b_{a_1}(x)
b_{a_1}(a_{b_1}(x)) → b_{b_1}(x)
b_{a_1}(a_{c_1}(x)) → b_{c_1}(x)
c_{a_1}(a_{a_1}(x)) → c_{a_1}(x)
c_{a_1}(a_{b_1}(x)) → c_{b_1}(x)
c_{a_1}(a_{c_1}(x)) → c_{c_1}(x)
a_{a_1}(a_{a_1}(a_{a_1}(x))) → a_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{a_1}(x)))))))
a_{a_1}(a_{a_1}(a_{b_1}(x))) → a_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{b_1}(x)))))))
a_{a_1}(a_{a_1}(a_{c_1}(x))) → a_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{c_1}(x)))))))
b_{a_1}(a_{a_1}(a_{a_1}(x))) → b_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{a_1}(x)))))))
b_{a_1}(a_{a_1}(a_{b_1}(x))) → b_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{b_1}(x)))))))
b_{a_1}(a_{a_1}(a_{c_1}(x))) → b_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{c_1}(x)))))))
c_{a_1}(a_{a_1}(a_{a_1}(x))) → c_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{a_1}(x)))))))
c_{a_1}(a_{a_1}(a_{b_1}(x))) → c_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{b_1}(x)))))))
c_{a_1}(a_{a_1}(a_{c_1}(x))) → c_{b_1}(b_{c_1}(c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(b_{c_1}(x)))))))
a_{b_1}(b_{c_1}(c_{a_1}(x))) → a_{a_1}(a_{a_1}(x))
a_{b_1}(b_{c_1}(c_{b_1}(x))) → a_{a_1}(a_{b_1}(x))
a_{b_1}(b_{c_1}(c_{c_1}(x))) → a_{a_1}(a_{c_1}(x))
b_{b_1}(b_{c_1}(c_{a_1}(x))) → b_{a_1}(a_{a_1}(x))
b_{b_1}(b_{c_1}(c_{b_1}(x))) → b_{a_1}(a_{b_1}(x))
b_{b_1}(b_{c_1}(c_{c_1}(x))) → b_{a_1}(a_{c_1}(x))
c_{b_1}(b_{c_1}(c_{a_1}(x))) → c_{a_1}(a_{a_1}(x))
c_{b_1}(b_{c_1}(c_{b_1}(x))) → c_{a_1}(a_{b_1}(x))
c_{b_1}(b_{c_1}(c_{c_1}(x))) → c_{a_1}(a_{c_1}(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(21) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(22) Obligation:
Q DP problem:
The TRS P consists of the following rules:
B_{A_1}(a_{a_1}(x)) → B_{A_1}(x)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(23) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- B_{A_1}(a_{a_1}(x)) → B_{A_1}(x)
The graph contains the following edges 1 > 1
(24) YES