YES
0 QTRS
↳1 FlatCCProof (⇔, 0 ms)
↳2 QTRS
↳3 RootLabelingProof (⇔, 0 ms)
↳4 QTRS
↳5 QTRSRRRProof (⇔, 5 ms)
↳6 QTRS
↳7 DependencyPairsProof (⇔, 6 ms)
↳8 QDP
↳9 DependencyGraphProof (⇔, 0 ms)
↳10 QDP
↳11 QDPOrderProof (⇔, 31 ms)
↳12 QDP
↳13 DependencyGraphProof (⇔, 0 ms)
↳14 TRUE
a(x) → x
a(a(x)) → a(b(a(c(a(x)))))
c(b(x)) → a(c(x))
a(a(x)) → a(b(a(c(a(x)))))
a(a(x)) → a(x)
b(a(x)) → b(x)
c(a(x)) → c(x)
a(c(b(x))) → a(a(c(x)))
b(c(b(x))) → b(a(c(x)))
c(c(b(x))) → c(a(c(x)))
a_{a_1}(a_{a_1}(x)) → a_{b_1}(b_{a_1}(a_{c_1}(c_{a_1}(a_{a_1}(x)))))
a_{a_1}(a_{b_1}(x)) → a_{b_1}(b_{a_1}(a_{c_1}(c_{a_1}(a_{b_1}(x)))))
a_{a_1}(a_{c_1}(x)) → a_{b_1}(b_{a_1}(a_{c_1}(c_{a_1}(a_{c_1}(x)))))
a_{a_1}(a_{a_1}(x)) → a_{a_1}(x)
a_{a_1}(a_{b_1}(x)) → a_{b_1}(x)
a_{a_1}(a_{c_1}(x)) → a_{c_1}(x)
b_{a_1}(a_{a_1}(x)) → b_{a_1}(x)
b_{a_1}(a_{b_1}(x)) → b_{b_1}(x)
b_{a_1}(a_{c_1}(x)) → b_{c_1}(x)
c_{a_1}(a_{a_1}(x)) → c_{a_1}(x)
c_{a_1}(a_{b_1}(x)) → c_{b_1}(x)
c_{a_1}(a_{c_1}(x)) → c_{c_1}(x)
a_{c_1}(c_{b_1}(b_{a_1}(x))) → a_{a_1}(a_{c_1}(c_{a_1}(x)))
a_{c_1}(c_{b_1}(b_{b_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(x)))
a_{c_1}(c_{b_1}(b_{c_1}(x))) → a_{a_1}(a_{c_1}(c_{c_1}(x)))
b_{c_1}(c_{b_1}(b_{a_1}(x))) → b_{a_1}(a_{c_1}(c_{a_1}(x)))
b_{c_1}(c_{b_1}(b_{b_1}(x))) → b_{a_1}(a_{c_1}(c_{b_1}(x)))
b_{c_1}(c_{b_1}(b_{c_1}(x))) → b_{a_1}(a_{c_1}(c_{c_1}(x)))
c_{c_1}(c_{b_1}(b_{a_1}(x))) → c_{a_1}(a_{c_1}(c_{a_1}(x)))
c_{c_1}(c_{b_1}(b_{b_1}(x))) → c_{a_1}(a_{c_1}(c_{b_1}(x)))
c_{c_1}(c_{b_1}(b_{c_1}(x))) → c_{a_1}(a_{c_1}(c_{c_1}(x)))
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(a_{a_1}(x1)) = 1 + x1
POL(a_{b_1}(x1)) = 1 + x1
POL(a_{c_1}(x1)) = x1
POL(b_{a_1}(x1)) = x1
POL(b_{b_1}(x1)) = 1 + x1
POL(b_{c_1}(x1)) = x1
POL(c_{a_1}(x1)) = x1
POL(c_{b_1}(x1)) = 1 + x1
POL(c_{c_1}(x1)) = x1
a_{a_1}(a_{a_1}(x)) → a_{a_1}(x)
a_{a_1}(a_{b_1}(x)) → a_{b_1}(x)
a_{a_1}(a_{c_1}(x)) → a_{c_1}(x)
b_{a_1}(a_{a_1}(x)) → b_{a_1}(x)
c_{a_1}(a_{a_1}(x)) → c_{a_1}(x)
b_{c_1}(c_{b_1}(b_{a_1}(x))) → b_{a_1}(a_{c_1}(c_{a_1}(x)))
b_{c_1}(c_{b_1}(b_{b_1}(x))) → b_{a_1}(a_{c_1}(c_{b_1}(x)))
b_{c_1}(c_{b_1}(b_{c_1}(x))) → b_{a_1}(a_{c_1}(c_{c_1}(x)))
c_{c_1}(c_{b_1}(b_{a_1}(x))) → c_{a_1}(a_{c_1}(c_{a_1}(x)))
c_{c_1}(c_{b_1}(b_{b_1}(x))) → c_{a_1}(a_{c_1}(c_{b_1}(x)))
c_{c_1}(c_{b_1}(b_{c_1}(x))) → c_{a_1}(a_{c_1}(c_{c_1}(x)))
a_{a_1}(a_{a_1}(x)) → a_{b_1}(b_{a_1}(a_{c_1}(c_{a_1}(a_{a_1}(x)))))
a_{a_1}(a_{b_1}(x)) → a_{b_1}(b_{a_1}(a_{c_1}(c_{a_1}(a_{b_1}(x)))))
a_{a_1}(a_{c_1}(x)) → a_{b_1}(b_{a_1}(a_{c_1}(c_{a_1}(a_{c_1}(x)))))
b_{a_1}(a_{b_1}(x)) → b_{b_1}(x)
b_{a_1}(a_{c_1}(x)) → b_{c_1}(x)
c_{a_1}(a_{b_1}(x)) → c_{b_1}(x)
c_{a_1}(a_{c_1}(x)) → c_{c_1}(x)
a_{c_1}(c_{b_1}(b_{a_1}(x))) → a_{a_1}(a_{c_1}(c_{a_1}(x)))
a_{c_1}(c_{b_1}(b_{b_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(x)))
a_{c_1}(c_{b_1}(b_{c_1}(x))) → a_{a_1}(a_{c_1}(c_{c_1}(x)))
A_{A_1}(a_{a_1}(x)) → B_{A_1}(a_{c_1}(c_{a_1}(a_{a_1}(x))))
A_{A_1}(a_{a_1}(x)) → A_{C_1}(c_{a_1}(a_{a_1}(x)))
A_{A_1}(a_{a_1}(x)) → C_{A_1}(a_{a_1}(x))
A_{A_1}(a_{b_1}(x)) → B_{A_1}(a_{c_1}(c_{a_1}(a_{b_1}(x))))
A_{A_1}(a_{b_1}(x)) → A_{C_1}(c_{a_1}(a_{b_1}(x)))
A_{A_1}(a_{b_1}(x)) → C_{A_1}(a_{b_1}(x))
A_{A_1}(a_{c_1}(x)) → B_{A_1}(a_{c_1}(c_{a_1}(a_{c_1}(x))))
A_{A_1}(a_{c_1}(x)) → A_{C_1}(c_{a_1}(a_{c_1}(x)))
A_{A_1}(a_{c_1}(x)) → C_{A_1}(a_{c_1}(x))
A_{C_1}(c_{b_1}(b_{a_1}(x))) → A_{A_1}(a_{c_1}(c_{a_1}(x)))
A_{C_1}(c_{b_1}(b_{a_1}(x))) → A_{C_1}(c_{a_1}(x))
A_{C_1}(c_{b_1}(b_{a_1}(x))) → C_{A_1}(x)
A_{C_1}(c_{b_1}(b_{b_1}(x))) → A_{A_1}(a_{c_1}(c_{b_1}(x)))
A_{C_1}(c_{b_1}(b_{b_1}(x))) → A_{C_1}(c_{b_1}(x))
A_{C_1}(c_{b_1}(b_{c_1}(x))) → A_{A_1}(a_{c_1}(c_{c_1}(x)))
A_{C_1}(c_{b_1}(b_{c_1}(x))) → A_{C_1}(c_{c_1}(x))
a_{a_1}(a_{a_1}(x)) → a_{b_1}(b_{a_1}(a_{c_1}(c_{a_1}(a_{a_1}(x)))))
a_{a_1}(a_{b_1}(x)) → a_{b_1}(b_{a_1}(a_{c_1}(c_{a_1}(a_{b_1}(x)))))
a_{a_1}(a_{c_1}(x)) → a_{b_1}(b_{a_1}(a_{c_1}(c_{a_1}(a_{c_1}(x)))))
b_{a_1}(a_{b_1}(x)) → b_{b_1}(x)
b_{a_1}(a_{c_1}(x)) → b_{c_1}(x)
c_{a_1}(a_{b_1}(x)) → c_{b_1}(x)
c_{a_1}(a_{c_1}(x)) → c_{c_1}(x)
a_{c_1}(c_{b_1}(b_{a_1}(x))) → a_{a_1}(a_{c_1}(c_{a_1}(x)))
a_{c_1}(c_{b_1}(b_{b_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(x)))
a_{c_1}(c_{b_1}(b_{c_1}(x))) → a_{a_1}(a_{c_1}(c_{c_1}(x)))
A_{A_1}(a_{a_1}(x)) → A_{C_1}(c_{a_1}(a_{a_1}(x)))
A_{C_1}(c_{b_1}(b_{a_1}(x))) → A_{A_1}(a_{c_1}(c_{a_1}(x)))
A_{A_1}(a_{b_1}(x)) → A_{C_1}(c_{a_1}(a_{b_1}(x)))
A_{C_1}(c_{b_1}(b_{a_1}(x))) → A_{C_1}(c_{a_1}(x))
A_{C_1}(c_{b_1}(b_{b_1}(x))) → A_{A_1}(a_{c_1}(c_{b_1}(x)))
A_{A_1}(a_{c_1}(x)) → A_{C_1}(c_{a_1}(a_{c_1}(x)))
A_{C_1}(c_{b_1}(b_{b_1}(x))) → A_{C_1}(c_{b_1}(x))
A_{C_1}(c_{b_1}(b_{c_1}(x))) → A_{A_1}(a_{c_1}(c_{c_1}(x)))
a_{a_1}(a_{a_1}(x)) → a_{b_1}(b_{a_1}(a_{c_1}(c_{a_1}(a_{a_1}(x)))))
a_{a_1}(a_{b_1}(x)) → a_{b_1}(b_{a_1}(a_{c_1}(c_{a_1}(a_{b_1}(x)))))
a_{a_1}(a_{c_1}(x)) → a_{b_1}(b_{a_1}(a_{c_1}(c_{a_1}(a_{c_1}(x)))))
b_{a_1}(a_{b_1}(x)) → b_{b_1}(x)
b_{a_1}(a_{c_1}(x)) → b_{c_1}(x)
c_{a_1}(a_{b_1}(x)) → c_{b_1}(x)
c_{a_1}(a_{c_1}(x)) → c_{c_1}(x)
a_{c_1}(c_{b_1}(b_{a_1}(x))) → a_{a_1}(a_{c_1}(c_{a_1}(x)))
a_{c_1}(c_{b_1}(b_{b_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(x)))
a_{c_1}(c_{b_1}(b_{c_1}(x))) → a_{a_1}(a_{c_1}(c_{c_1}(x)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
A_{C_1}(c_{b_1}(b_{a_1}(x))) → A_{A_1}(a_{c_1}(c_{a_1}(x)))
A_{C_1}(c_{b_1}(b_{a_1}(x))) → A_{C_1}(c_{a_1}(x))
A_{C_1}(c_{b_1}(b_{b_1}(x))) → A_{A_1}(a_{c_1}(c_{b_1}(x)))
A_{C_1}(c_{b_1}(b_{b_1}(x))) → A_{C_1}(c_{b_1}(x))
A_{C_1}(c_{b_1}(b_{c_1}(x))) → A_{A_1}(a_{c_1}(c_{c_1}(x)))
POL(A_{A_1}(x1)) = 1 + x1
POL(A_{C_1}(x1)) = 1 + x1
POL(a_{a_1}(x1)) = 1 + x1
POL(a_{b_1}(x1)) = x1
POL(a_{c_1}(x1)) = x1
POL(b_{a_1}(x1)) = 1 + x1
POL(b_{b_1}(x1)) = 1 + x1
POL(b_{c_1}(x1)) = 1 + x1
POL(c_{a_1}(x1)) = x1
POL(c_{b_1}(x1)) = x1
POL(c_{c_1}(x1)) = x1
a_{a_1}(a_{a_1}(x)) → a_{b_1}(b_{a_1}(a_{c_1}(c_{a_1}(a_{a_1}(x)))))
a_{a_1}(a_{b_1}(x)) → a_{b_1}(b_{a_1}(a_{c_1}(c_{a_1}(a_{b_1}(x)))))
a_{a_1}(a_{c_1}(x)) → a_{b_1}(b_{a_1}(a_{c_1}(c_{a_1}(a_{c_1}(x)))))
c_{a_1}(a_{b_1}(x)) → c_{b_1}(x)
c_{a_1}(a_{c_1}(x)) → c_{c_1}(x)
a_{c_1}(c_{b_1}(b_{a_1}(x))) → a_{a_1}(a_{c_1}(c_{a_1}(x)))
a_{c_1}(c_{b_1}(b_{b_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(x)))
a_{c_1}(c_{b_1}(b_{c_1}(x))) → a_{a_1}(a_{c_1}(c_{c_1}(x)))
b_{a_1}(a_{b_1}(x)) → b_{b_1}(x)
b_{a_1}(a_{c_1}(x)) → b_{c_1}(x)
A_{A_1}(a_{a_1}(x)) → A_{C_1}(c_{a_1}(a_{a_1}(x)))
A_{A_1}(a_{b_1}(x)) → A_{C_1}(c_{a_1}(a_{b_1}(x)))
A_{A_1}(a_{c_1}(x)) → A_{C_1}(c_{a_1}(a_{c_1}(x)))
a_{a_1}(a_{a_1}(x)) → a_{b_1}(b_{a_1}(a_{c_1}(c_{a_1}(a_{a_1}(x)))))
a_{a_1}(a_{b_1}(x)) → a_{b_1}(b_{a_1}(a_{c_1}(c_{a_1}(a_{b_1}(x)))))
a_{a_1}(a_{c_1}(x)) → a_{b_1}(b_{a_1}(a_{c_1}(c_{a_1}(a_{c_1}(x)))))
b_{a_1}(a_{b_1}(x)) → b_{b_1}(x)
b_{a_1}(a_{c_1}(x)) → b_{c_1}(x)
c_{a_1}(a_{b_1}(x)) → c_{b_1}(x)
c_{a_1}(a_{c_1}(x)) → c_{c_1}(x)
a_{c_1}(c_{b_1}(b_{a_1}(x))) → a_{a_1}(a_{c_1}(c_{a_1}(x)))
a_{c_1}(c_{b_1}(b_{b_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(x)))
a_{c_1}(c_{b_1}(b_{c_1}(x))) → a_{a_1}(a_{c_1}(c_{c_1}(x)))