YES
0 QTRS
↳1 QTRS Reverse (⇔, 0 ms)
↳2 QTRS
↳3 FlatCCProof (⇔, 0 ms)
↳4 QTRS
↳5 RootLabelingProof (⇔, 0 ms)
↳6 QTRS
↳7 QTRSRRRProof (⇔, 40 ms)
↳8 QTRS
↳9 DependencyPairsProof (⇔, 32 ms)
↳10 QDP
↳11 DependencyGraphProof (⇔, 0 ms)
↳12 QDP
↳13 QDPOrderProof (⇔, 119 ms)
↳14 QDP
↳15 DependencyGraphProof (⇔, 0 ms)
↳16 AND
↳17 QDP
↳18 UsableRulesProof (⇔, 0 ms)
↳19 QDP
↳20 QDPSizeChangeProof (⇔, 0 ms)
↳21 YES
↳22 QDP
↳23 UsableRulesProof (⇔, 0 ms)
↳24 QDP
↳25 QDPSizeChangeProof (⇔, 0 ms)
↳26 YES
a(b(x)) → x
a(c(x)) → b(c(a(b(c(a(x))))))
b(c(x)) → x
b(a(x)) → x
c(a(x)) → a(c(b(a(c(b(x))))))
c(b(x)) → x
b(b(a(x))) → b(x)
a(b(a(x))) → a(x)
c(b(a(x))) → c(x)
b(c(a(x))) → b(a(c(b(a(c(b(x)))))))
a(c(a(x))) → a(a(c(b(a(c(b(x)))))))
c(c(a(x))) → c(a(c(b(a(c(b(x)))))))
b(c(b(x))) → b(x)
a(c(b(x))) → a(x)
c(c(b(x))) → c(x)
b_{b_1}(b_{a_1}(a_{b_1}(x))) → b_{b_1}(x)
b_{b_1}(b_{a_1}(a_{a_1}(x))) → b_{a_1}(x)
b_{b_1}(b_{a_1}(a_{c_1}(x))) → b_{c_1}(x)
a_{b_1}(b_{a_1}(a_{b_1}(x))) → a_{b_1}(x)
a_{b_1}(b_{a_1}(a_{a_1}(x))) → a_{a_1}(x)
a_{b_1}(b_{a_1}(a_{c_1}(x))) → a_{c_1}(x)
c_{b_1}(b_{a_1}(a_{b_1}(x))) → c_{b_1}(x)
c_{b_1}(b_{a_1}(a_{a_1}(x))) → c_{a_1}(x)
c_{b_1}(b_{a_1}(a_{c_1}(x))) → c_{c_1}(x)
b_{c_1}(c_{a_1}(a_{b_1}(x))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x)))))))
b_{c_1}(c_{a_1}(a_{a_1}(x))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x)))))))
b_{c_1}(c_{a_1}(a_{c_1}(x))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x)))))))
a_{c_1}(c_{a_1}(a_{b_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x)))))))
a_{c_1}(c_{a_1}(a_{a_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x)))))))
a_{c_1}(c_{a_1}(a_{c_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x)))))))
c_{c_1}(c_{a_1}(a_{b_1}(x))) → c_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x)))))))
c_{c_1}(c_{a_1}(a_{a_1}(x))) → c_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x)))))))
c_{c_1}(c_{a_1}(a_{c_1}(x))) → c_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x)))))))
b_{c_1}(c_{b_1}(b_{b_1}(x))) → b_{b_1}(x)
b_{c_1}(c_{b_1}(b_{a_1}(x))) → b_{a_1}(x)
b_{c_1}(c_{b_1}(b_{c_1}(x))) → b_{c_1}(x)
a_{c_1}(c_{b_1}(b_{b_1}(x))) → a_{b_1}(x)
a_{c_1}(c_{b_1}(b_{a_1}(x))) → a_{a_1}(x)
a_{c_1}(c_{b_1}(b_{c_1}(x))) → a_{c_1}(x)
c_{c_1}(c_{b_1}(b_{b_1}(x))) → c_{b_1}(x)
c_{c_1}(c_{b_1}(b_{a_1}(x))) → c_{a_1}(x)
c_{c_1}(c_{b_1}(b_{c_1}(x))) → c_{c_1}(x)
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(a_{a_1}(x1)) = x1
POL(a_{b_1}(x1)) = 1 + x1
POL(a_{c_1}(x1)) = x1
POL(b_{a_1}(x1)) = x1
POL(b_{b_1}(x1)) = 1 + x1
POL(b_{c_1}(x1)) = x1
POL(c_{a_1}(x1)) = x1
POL(c_{b_1}(x1)) = x1
POL(c_{c_1}(x1)) = x1
b_{b_1}(b_{a_1}(a_{b_1}(x))) → b_{b_1}(x)
b_{b_1}(b_{a_1}(a_{a_1}(x))) → b_{a_1}(x)
b_{b_1}(b_{a_1}(a_{c_1}(x))) → b_{c_1}(x)
a_{b_1}(b_{a_1}(a_{b_1}(x))) → a_{b_1}(x)
a_{b_1}(b_{a_1}(a_{a_1}(x))) → a_{a_1}(x)
a_{b_1}(b_{a_1}(a_{c_1}(x))) → a_{c_1}(x)
c_{b_1}(b_{a_1}(a_{b_1}(x))) → c_{b_1}(x)
c_{c_1}(c_{b_1}(b_{b_1}(x))) → c_{b_1}(x)
c_{b_1}(b_{a_1}(a_{a_1}(x))) → c_{a_1}(x)
c_{b_1}(b_{a_1}(a_{c_1}(x))) → c_{c_1}(x)
b_{c_1}(c_{a_1}(a_{b_1}(x))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x)))))))
b_{c_1}(c_{a_1}(a_{a_1}(x))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x)))))))
b_{c_1}(c_{a_1}(a_{c_1}(x))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x)))))))
a_{c_1}(c_{a_1}(a_{b_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x)))))))
a_{c_1}(c_{a_1}(a_{a_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x)))))))
a_{c_1}(c_{a_1}(a_{c_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x)))))))
c_{c_1}(c_{a_1}(a_{b_1}(x))) → c_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x)))))))
c_{c_1}(c_{a_1}(a_{a_1}(x))) → c_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x)))))))
c_{c_1}(c_{a_1}(a_{c_1}(x))) → c_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x)))))))
b_{c_1}(c_{b_1}(b_{b_1}(x))) → b_{b_1}(x)
b_{c_1}(c_{b_1}(b_{a_1}(x))) → b_{a_1}(x)
b_{c_1}(c_{b_1}(b_{c_1}(x))) → b_{c_1}(x)
a_{c_1}(c_{b_1}(b_{b_1}(x))) → a_{b_1}(x)
a_{c_1}(c_{b_1}(b_{a_1}(x))) → a_{a_1}(x)
a_{c_1}(c_{b_1}(b_{c_1}(x))) → a_{c_1}(x)
c_{c_1}(c_{b_1}(b_{a_1}(x))) → c_{a_1}(x)
c_{c_1}(c_{b_1}(b_{c_1}(x))) → c_{c_1}(x)
C_{B_1}(b_{a_1}(a_{c_1}(x))) → C_{C_1}(x)
B_{C_1}(c_{a_1}(a_{b_1}(x))) → A_{C_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x))))))
B_{C_1}(c_{a_1}(a_{b_1}(x))) → C_{B_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x)))))
B_{C_1}(c_{a_1}(a_{b_1}(x))) → A_{C_1}(c_{b_1}(b_{b_1}(x)))
B_{C_1}(c_{a_1}(a_{b_1}(x))) → C_{B_1}(b_{b_1}(x))
B_{C_1}(c_{a_1}(a_{a_1}(x))) → A_{C_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x))))))
B_{C_1}(c_{a_1}(a_{a_1}(x))) → C_{B_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x)))))
B_{C_1}(c_{a_1}(a_{a_1}(x))) → A_{C_1}(c_{b_1}(b_{a_1}(x)))
B_{C_1}(c_{a_1}(a_{a_1}(x))) → C_{B_1}(b_{a_1}(x))
B_{C_1}(c_{a_1}(a_{c_1}(x))) → A_{C_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x))))))
B_{C_1}(c_{a_1}(a_{c_1}(x))) → C_{B_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x)))))
B_{C_1}(c_{a_1}(a_{c_1}(x))) → A_{C_1}(c_{b_1}(b_{c_1}(x)))
B_{C_1}(c_{a_1}(a_{c_1}(x))) → C_{B_1}(b_{c_1}(x))
B_{C_1}(c_{a_1}(a_{c_1}(x))) → B_{C_1}(x)
A_{C_1}(c_{a_1}(a_{b_1}(x))) → A_{C_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x))))))
A_{C_1}(c_{a_1}(a_{b_1}(x))) → C_{B_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x)))))
A_{C_1}(c_{a_1}(a_{b_1}(x))) → A_{C_1}(c_{b_1}(b_{b_1}(x)))
A_{C_1}(c_{a_1}(a_{b_1}(x))) → C_{B_1}(b_{b_1}(x))
A_{C_1}(c_{a_1}(a_{a_1}(x))) → A_{C_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x))))))
A_{C_1}(c_{a_1}(a_{a_1}(x))) → C_{B_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x)))))
A_{C_1}(c_{a_1}(a_{a_1}(x))) → A_{C_1}(c_{b_1}(b_{a_1}(x)))
A_{C_1}(c_{a_1}(a_{a_1}(x))) → C_{B_1}(b_{a_1}(x))
A_{C_1}(c_{a_1}(a_{c_1}(x))) → A_{C_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x))))))
A_{C_1}(c_{a_1}(a_{c_1}(x))) → C_{B_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x)))))
A_{C_1}(c_{a_1}(a_{c_1}(x))) → A_{C_1}(c_{b_1}(b_{c_1}(x)))
A_{C_1}(c_{a_1}(a_{c_1}(x))) → C_{B_1}(b_{c_1}(x))
A_{C_1}(c_{a_1}(a_{c_1}(x))) → B_{C_1}(x)
C_{C_1}(c_{a_1}(a_{b_1}(x))) → A_{C_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x))))))
C_{C_1}(c_{a_1}(a_{b_1}(x))) → C_{B_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x)))))
C_{C_1}(c_{a_1}(a_{b_1}(x))) → A_{C_1}(c_{b_1}(b_{b_1}(x)))
C_{C_1}(c_{a_1}(a_{b_1}(x))) → C_{B_1}(b_{b_1}(x))
C_{C_1}(c_{a_1}(a_{a_1}(x))) → A_{C_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x))))))
C_{C_1}(c_{a_1}(a_{a_1}(x))) → C_{B_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x)))))
C_{C_1}(c_{a_1}(a_{a_1}(x))) → A_{C_1}(c_{b_1}(b_{a_1}(x)))
C_{C_1}(c_{a_1}(a_{a_1}(x))) → C_{B_1}(b_{a_1}(x))
C_{C_1}(c_{a_1}(a_{c_1}(x))) → A_{C_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x))))))
C_{C_1}(c_{a_1}(a_{c_1}(x))) → C_{B_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x)))))
C_{C_1}(c_{a_1}(a_{c_1}(x))) → A_{C_1}(c_{b_1}(b_{c_1}(x)))
C_{C_1}(c_{a_1}(a_{c_1}(x))) → C_{B_1}(b_{c_1}(x))
C_{C_1}(c_{a_1}(a_{c_1}(x))) → B_{C_1}(x)
A_{C_1}(c_{b_1}(b_{c_1}(x))) → A_{C_1}(x)
C_{C_1}(c_{b_1}(b_{c_1}(x))) → C_{C_1}(x)
c_{b_1}(b_{a_1}(a_{a_1}(x))) → c_{a_1}(x)
c_{b_1}(b_{a_1}(a_{c_1}(x))) → c_{c_1}(x)
b_{c_1}(c_{a_1}(a_{b_1}(x))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x)))))))
b_{c_1}(c_{a_1}(a_{a_1}(x))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x)))))))
b_{c_1}(c_{a_1}(a_{c_1}(x))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x)))))))
a_{c_1}(c_{a_1}(a_{b_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x)))))))
a_{c_1}(c_{a_1}(a_{a_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x)))))))
a_{c_1}(c_{a_1}(a_{c_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x)))))))
c_{c_1}(c_{a_1}(a_{b_1}(x))) → c_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x)))))))
c_{c_1}(c_{a_1}(a_{a_1}(x))) → c_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x)))))))
c_{c_1}(c_{a_1}(a_{c_1}(x))) → c_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x)))))))
b_{c_1}(c_{b_1}(b_{b_1}(x))) → b_{b_1}(x)
b_{c_1}(c_{b_1}(b_{a_1}(x))) → b_{a_1}(x)
b_{c_1}(c_{b_1}(b_{c_1}(x))) → b_{c_1}(x)
a_{c_1}(c_{b_1}(b_{b_1}(x))) → a_{b_1}(x)
a_{c_1}(c_{b_1}(b_{a_1}(x))) → a_{a_1}(x)
a_{c_1}(c_{b_1}(b_{c_1}(x))) → a_{c_1}(x)
c_{c_1}(c_{b_1}(b_{a_1}(x))) → c_{a_1}(x)
c_{c_1}(c_{b_1}(b_{c_1}(x))) → c_{c_1}(x)
C_{C_1}(c_{a_1}(a_{b_1}(x))) → A_{C_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x))))))
A_{C_1}(c_{a_1}(a_{b_1}(x))) → A_{C_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x))))))
A_{C_1}(c_{a_1}(a_{b_1}(x))) → C_{B_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x)))))
C_{B_1}(b_{a_1}(a_{c_1}(x))) → C_{C_1}(x)
C_{C_1}(c_{a_1}(a_{b_1}(x))) → C_{B_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x)))))
C_{C_1}(c_{a_1}(a_{a_1}(x))) → A_{C_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x))))))
A_{C_1}(c_{a_1}(a_{a_1}(x))) → A_{C_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x))))))
A_{C_1}(c_{a_1}(a_{a_1}(x))) → C_{B_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x)))))
A_{C_1}(c_{a_1}(a_{a_1}(x))) → A_{C_1}(c_{b_1}(b_{a_1}(x)))
A_{C_1}(c_{a_1}(a_{a_1}(x))) → C_{B_1}(b_{a_1}(x))
A_{C_1}(c_{a_1}(a_{c_1}(x))) → A_{C_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x))))))
A_{C_1}(c_{a_1}(a_{c_1}(x))) → C_{B_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x)))))
A_{C_1}(c_{a_1}(a_{c_1}(x))) → A_{C_1}(c_{b_1}(b_{c_1}(x)))
A_{C_1}(c_{a_1}(a_{c_1}(x))) → C_{B_1}(b_{c_1}(x))
A_{C_1}(c_{a_1}(a_{c_1}(x))) → B_{C_1}(x)
B_{C_1}(c_{a_1}(a_{b_1}(x))) → A_{C_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x))))))
A_{C_1}(c_{b_1}(b_{c_1}(x))) → A_{C_1}(x)
B_{C_1}(c_{a_1}(a_{b_1}(x))) → C_{B_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x)))))
B_{C_1}(c_{a_1}(a_{a_1}(x))) → A_{C_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x))))))
B_{C_1}(c_{a_1}(a_{a_1}(x))) → C_{B_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x)))))
B_{C_1}(c_{a_1}(a_{a_1}(x))) → A_{C_1}(c_{b_1}(b_{a_1}(x)))
B_{C_1}(c_{a_1}(a_{a_1}(x))) → C_{B_1}(b_{a_1}(x))
B_{C_1}(c_{a_1}(a_{c_1}(x))) → A_{C_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x))))))
B_{C_1}(c_{a_1}(a_{c_1}(x))) → C_{B_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x)))))
B_{C_1}(c_{a_1}(a_{c_1}(x))) → A_{C_1}(c_{b_1}(b_{c_1}(x)))
B_{C_1}(c_{a_1}(a_{c_1}(x))) → C_{B_1}(b_{c_1}(x))
B_{C_1}(c_{a_1}(a_{c_1}(x))) → B_{C_1}(x)
C_{C_1}(c_{a_1}(a_{a_1}(x))) → C_{B_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x)))))
C_{C_1}(c_{a_1}(a_{a_1}(x))) → A_{C_1}(c_{b_1}(b_{a_1}(x)))
C_{C_1}(c_{a_1}(a_{a_1}(x))) → C_{B_1}(b_{a_1}(x))
C_{C_1}(c_{a_1}(a_{c_1}(x))) → A_{C_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x))))))
C_{C_1}(c_{a_1}(a_{c_1}(x))) → C_{B_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x)))))
C_{C_1}(c_{a_1}(a_{c_1}(x))) → A_{C_1}(c_{b_1}(b_{c_1}(x)))
C_{C_1}(c_{a_1}(a_{c_1}(x))) → C_{B_1}(b_{c_1}(x))
C_{C_1}(c_{a_1}(a_{c_1}(x))) → B_{C_1}(x)
C_{C_1}(c_{b_1}(b_{c_1}(x))) → C_{C_1}(x)
c_{b_1}(b_{a_1}(a_{a_1}(x))) → c_{a_1}(x)
c_{b_1}(b_{a_1}(a_{c_1}(x))) → c_{c_1}(x)
b_{c_1}(c_{a_1}(a_{b_1}(x))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x)))))))
b_{c_1}(c_{a_1}(a_{a_1}(x))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x)))))))
b_{c_1}(c_{a_1}(a_{c_1}(x))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x)))))))
a_{c_1}(c_{a_1}(a_{b_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x)))))))
a_{c_1}(c_{a_1}(a_{a_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x)))))))
a_{c_1}(c_{a_1}(a_{c_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x)))))))
c_{c_1}(c_{a_1}(a_{b_1}(x))) → c_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x)))))))
c_{c_1}(c_{a_1}(a_{a_1}(x))) → c_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x)))))))
c_{c_1}(c_{a_1}(a_{c_1}(x))) → c_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x)))))))
b_{c_1}(c_{b_1}(b_{b_1}(x))) → b_{b_1}(x)
b_{c_1}(c_{b_1}(b_{a_1}(x))) → b_{a_1}(x)
b_{c_1}(c_{b_1}(b_{c_1}(x))) → b_{c_1}(x)
a_{c_1}(c_{b_1}(b_{b_1}(x))) → a_{b_1}(x)
a_{c_1}(c_{b_1}(b_{a_1}(x))) → a_{a_1}(x)
a_{c_1}(c_{b_1}(b_{c_1}(x))) → a_{c_1}(x)
c_{c_1}(c_{b_1}(b_{a_1}(x))) → c_{a_1}(x)
c_{c_1}(c_{b_1}(b_{c_1}(x))) → c_{c_1}(x)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
C_{C_1}(c_{a_1}(a_{b_1}(x))) → A_{C_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x))))))
A_{C_1}(c_{a_1}(a_{b_1}(x))) → A_{C_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x))))))
A_{C_1}(c_{a_1}(a_{b_1}(x))) → C_{B_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x)))))
C_{C_1}(c_{a_1}(a_{b_1}(x))) → C_{B_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x)))))
C_{C_1}(c_{a_1}(a_{a_1}(x))) → A_{C_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x))))))
A_{C_1}(c_{a_1}(a_{a_1}(x))) → A_{C_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x))))))
A_{C_1}(c_{a_1}(a_{a_1}(x))) → C_{B_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x)))))
A_{C_1}(c_{a_1}(a_{a_1}(x))) → A_{C_1}(c_{b_1}(b_{a_1}(x)))
A_{C_1}(c_{a_1}(a_{a_1}(x))) → C_{B_1}(b_{a_1}(x))
A_{C_1}(c_{a_1}(a_{c_1}(x))) → A_{C_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x))))))
A_{C_1}(c_{a_1}(a_{c_1}(x))) → C_{B_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x)))))
A_{C_1}(c_{a_1}(a_{c_1}(x))) → A_{C_1}(c_{b_1}(b_{c_1}(x)))
A_{C_1}(c_{a_1}(a_{c_1}(x))) → C_{B_1}(b_{c_1}(x))
A_{C_1}(c_{a_1}(a_{c_1}(x))) → B_{C_1}(x)
B_{C_1}(c_{a_1}(a_{b_1}(x))) → A_{C_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x))))))
B_{C_1}(c_{a_1}(a_{b_1}(x))) → C_{B_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x)))))
B_{C_1}(c_{a_1}(a_{a_1}(x))) → A_{C_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x))))))
B_{C_1}(c_{a_1}(a_{a_1}(x))) → C_{B_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x)))))
B_{C_1}(c_{a_1}(a_{a_1}(x))) → A_{C_1}(c_{b_1}(b_{a_1}(x)))
B_{C_1}(c_{a_1}(a_{a_1}(x))) → C_{B_1}(b_{a_1}(x))
B_{C_1}(c_{a_1}(a_{c_1}(x))) → A_{C_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x))))))
B_{C_1}(c_{a_1}(a_{c_1}(x))) → C_{B_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x)))))
B_{C_1}(c_{a_1}(a_{c_1}(x))) → A_{C_1}(c_{b_1}(b_{c_1}(x)))
B_{C_1}(c_{a_1}(a_{c_1}(x))) → C_{B_1}(b_{c_1}(x))
B_{C_1}(c_{a_1}(a_{c_1}(x))) → B_{C_1}(x)
C_{C_1}(c_{a_1}(a_{a_1}(x))) → C_{B_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x)))))
C_{C_1}(c_{a_1}(a_{a_1}(x))) → A_{C_1}(c_{b_1}(b_{a_1}(x)))
C_{C_1}(c_{a_1}(a_{a_1}(x))) → C_{B_1}(b_{a_1}(x))
C_{C_1}(c_{a_1}(a_{c_1}(x))) → A_{C_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x))))))
C_{C_1}(c_{a_1}(a_{c_1}(x))) → C_{B_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x)))))
C_{C_1}(c_{a_1}(a_{c_1}(x))) → A_{C_1}(c_{b_1}(b_{c_1}(x)))
C_{C_1}(c_{a_1}(a_{c_1}(x))) → C_{B_1}(b_{c_1}(x))
C_{C_1}(c_{a_1}(a_{c_1}(x))) → B_{C_1}(x)
POL(A_{C_1}(x1)) = 1 + x1
POL(B_{C_1}(x1)) = 1 + x1
POL(C_{B_1}(x1)) = x1
POL(C_{C_1}(x1)) = 1 + x1
POL(a_{a_1}(x1)) = 1 + x1
POL(a_{b_1}(x1)) = 1 + x1
POL(a_{c_1}(x1)) = 1 + x1
POL(b_{a_1}(x1)) = x1
POL(b_{b_1}(x1)) = x1
POL(b_{c_1}(x1)) = x1
POL(c_{a_1}(x1)) = 1 + x1
POL(c_{b_1}(x1)) = x1
POL(c_{c_1}(x1)) = 1 + x1
a_{c_1}(c_{b_1}(b_{b_1}(x))) → a_{b_1}(x)
c_{b_1}(b_{a_1}(a_{a_1}(x))) → c_{a_1}(x)
c_{b_1}(b_{a_1}(a_{c_1}(x))) → c_{c_1}(x)
a_{c_1}(c_{a_1}(a_{b_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x)))))))
a_{c_1}(c_{a_1}(a_{a_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x)))))))
a_{c_1}(c_{a_1}(a_{c_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x)))))))
a_{c_1}(c_{b_1}(b_{a_1}(x))) → a_{a_1}(x)
a_{c_1}(c_{b_1}(b_{c_1}(x))) → a_{c_1}(x)
b_{c_1}(c_{a_1}(a_{b_1}(x))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x)))))))
b_{c_1}(c_{a_1}(a_{a_1}(x))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x)))))))
b_{c_1}(c_{a_1}(a_{c_1}(x))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x)))))))
b_{c_1}(c_{b_1}(b_{b_1}(x))) → b_{b_1}(x)
b_{c_1}(c_{b_1}(b_{a_1}(x))) → b_{a_1}(x)
b_{c_1}(c_{b_1}(b_{c_1}(x))) → b_{c_1}(x)
c_{c_1}(c_{a_1}(a_{b_1}(x))) → c_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x)))))))
c_{c_1}(c_{a_1}(a_{a_1}(x))) → c_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x)))))))
c_{c_1}(c_{a_1}(a_{c_1}(x))) → c_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x)))))))
c_{c_1}(c_{b_1}(b_{c_1}(x))) → c_{c_1}(x)
c_{c_1}(c_{b_1}(b_{a_1}(x))) → c_{a_1}(x)
C_{B_1}(b_{a_1}(a_{c_1}(x))) → C_{C_1}(x)
A_{C_1}(c_{b_1}(b_{c_1}(x))) → A_{C_1}(x)
C_{C_1}(c_{b_1}(b_{c_1}(x))) → C_{C_1}(x)
c_{b_1}(b_{a_1}(a_{a_1}(x))) → c_{a_1}(x)
c_{b_1}(b_{a_1}(a_{c_1}(x))) → c_{c_1}(x)
b_{c_1}(c_{a_1}(a_{b_1}(x))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x)))))))
b_{c_1}(c_{a_1}(a_{a_1}(x))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x)))))))
b_{c_1}(c_{a_1}(a_{c_1}(x))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x)))))))
a_{c_1}(c_{a_1}(a_{b_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x)))))))
a_{c_1}(c_{a_1}(a_{a_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x)))))))
a_{c_1}(c_{a_1}(a_{c_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x)))))))
c_{c_1}(c_{a_1}(a_{b_1}(x))) → c_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x)))))))
c_{c_1}(c_{a_1}(a_{a_1}(x))) → c_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x)))))))
c_{c_1}(c_{a_1}(a_{c_1}(x))) → c_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x)))))))
b_{c_1}(c_{b_1}(b_{b_1}(x))) → b_{b_1}(x)
b_{c_1}(c_{b_1}(b_{a_1}(x))) → b_{a_1}(x)
b_{c_1}(c_{b_1}(b_{c_1}(x))) → b_{c_1}(x)
a_{c_1}(c_{b_1}(b_{b_1}(x))) → a_{b_1}(x)
a_{c_1}(c_{b_1}(b_{a_1}(x))) → a_{a_1}(x)
a_{c_1}(c_{b_1}(b_{c_1}(x))) → a_{c_1}(x)
c_{c_1}(c_{b_1}(b_{a_1}(x))) → c_{a_1}(x)
c_{c_1}(c_{b_1}(b_{c_1}(x))) → c_{c_1}(x)
C_{C_1}(c_{b_1}(b_{c_1}(x))) → C_{C_1}(x)
c_{b_1}(b_{a_1}(a_{a_1}(x))) → c_{a_1}(x)
c_{b_1}(b_{a_1}(a_{c_1}(x))) → c_{c_1}(x)
b_{c_1}(c_{a_1}(a_{b_1}(x))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x)))))))
b_{c_1}(c_{a_1}(a_{a_1}(x))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x)))))))
b_{c_1}(c_{a_1}(a_{c_1}(x))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x)))))))
a_{c_1}(c_{a_1}(a_{b_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x)))))))
a_{c_1}(c_{a_1}(a_{a_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x)))))))
a_{c_1}(c_{a_1}(a_{c_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x)))))))
c_{c_1}(c_{a_1}(a_{b_1}(x))) → c_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x)))))))
c_{c_1}(c_{a_1}(a_{a_1}(x))) → c_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x)))))))
c_{c_1}(c_{a_1}(a_{c_1}(x))) → c_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x)))))))
b_{c_1}(c_{b_1}(b_{b_1}(x))) → b_{b_1}(x)
b_{c_1}(c_{b_1}(b_{a_1}(x))) → b_{a_1}(x)
b_{c_1}(c_{b_1}(b_{c_1}(x))) → b_{c_1}(x)
a_{c_1}(c_{b_1}(b_{b_1}(x))) → a_{b_1}(x)
a_{c_1}(c_{b_1}(b_{a_1}(x))) → a_{a_1}(x)
a_{c_1}(c_{b_1}(b_{c_1}(x))) → a_{c_1}(x)
c_{c_1}(c_{b_1}(b_{a_1}(x))) → c_{a_1}(x)
c_{c_1}(c_{b_1}(b_{c_1}(x))) → c_{c_1}(x)
C_{C_1}(c_{b_1}(b_{c_1}(x))) → C_{C_1}(x)
From the DPs we obtained the following set of size-change graphs:
A_{C_1}(c_{b_1}(b_{c_1}(x))) → A_{C_1}(x)
c_{b_1}(b_{a_1}(a_{a_1}(x))) → c_{a_1}(x)
c_{b_1}(b_{a_1}(a_{c_1}(x))) → c_{c_1}(x)
b_{c_1}(c_{a_1}(a_{b_1}(x))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x)))))))
b_{c_1}(c_{a_1}(a_{a_1}(x))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x)))))))
b_{c_1}(c_{a_1}(a_{c_1}(x))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x)))))))
a_{c_1}(c_{a_1}(a_{b_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x)))))))
a_{c_1}(c_{a_1}(a_{a_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x)))))))
a_{c_1}(c_{a_1}(a_{c_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x)))))))
c_{c_1}(c_{a_1}(a_{b_1}(x))) → c_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x)))))))
c_{c_1}(c_{a_1}(a_{a_1}(x))) → c_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x)))))))
c_{c_1}(c_{a_1}(a_{c_1}(x))) → c_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x)))))))
b_{c_1}(c_{b_1}(b_{b_1}(x))) → b_{b_1}(x)
b_{c_1}(c_{b_1}(b_{a_1}(x))) → b_{a_1}(x)
b_{c_1}(c_{b_1}(b_{c_1}(x))) → b_{c_1}(x)
a_{c_1}(c_{b_1}(b_{b_1}(x))) → a_{b_1}(x)
a_{c_1}(c_{b_1}(b_{a_1}(x))) → a_{a_1}(x)
a_{c_1}(c_{b_1}(b_{c_1}(x))) → a_{c_1}(x)
c_{c_1}(c_{b_1}(b_{a_1}(x))) → c_{a_1}(x)
c_{c_1}(c_{b_1}(b_{c_1}(x))) → c_{c_1}(x)
A_{C_1}(c_{b_1}(b_{c_1}(x))) → A_{C_1}(x)
From the DPs we obtained the following set of size-change graphs: