YES
Termination Proof
Termination Proof
by ttt2 (version ttt2 1.15)
Input
The rewrite relation of the following TRS is considered.
a(a(x0)) |
→ |
b(b(x0)) |
a(b(x0)) |
→ |
c(c(x0)) |
b(c(x0)) |
→ |
a(a(x0)) |
Proof
1 String Reversal
Since only unary symbols occur, one can reverse all terms and obtains the TRS
a(a(x0)) |
→ |
b(b(x0)) |
b(a(x0)) |
→ |
c(c(x0)) |
c(b(x0)) |
→ |
a(a(x0)) |
1.1 Dependency Pair Transformation
The following set of initial dependency pairs has been identified.
a#(a(x0)) |
→ |
b#(x0) |
a#(a(x0)) |
→ |
b#(b(x0)) |
b#(a(x0)) |
→ |
c#(x0) |
b#(a(x0)) |
→ |
c#(c(x0)) |
c#(b(x0)) |
→ |
a#(x0) |
c#(b(x0)) |
→ |
a#(a(x0)) |
1.1.1 Reduction Pair Processor with Usable Rules
Using the linear polynomial interpretation over the arctic semiring over the integers
[b#(x1)] |
= |
0 ·
x1 +
-∞
|
[b(x1)] |
= |
1 ·
x1 +
-∞
|
[a#(x1)] |
= |
0 ·
x1 +
-∞
|
[c#(x1)] |
= |
0 ·
x1 +
-∞
|
[a(x1)] |
= |
1 ·
x1 +
-∞
|
[c(x1)] |
= |
1 ·
x1 +
-∞
|
together with the usable
rules
a(a(x0)) |
→ |
b(b(x0)) |
b(a(x0)) |
→ |
c(c(x0)) |
c(b(x0)) |
→ |
a(a(x0)) |
(w.r.t. the implicit argument filter of the reduction pair),
the
pairs
a#(a(x0)) |
→ |
b#(b(x0)) |
b#(a(x0)) |
→ |
c#(c(x0)) |
c#(b(x0)) |
→ |
a#(a(x0)) |
remain.
1.1.1.1 Reduction Pair Processor with Usable Rules
Using the linear polynomial interpretation over (4 x 4)-matrices with strict dimension 1
over the arctic semiring over the integers
[b#(x1)] |
= |
0 |
0 |
0 |
0 |
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
·
x1 +
0 |
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
|
[b(x1)] |
= |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
·
x1 +
0 |
-∞
|
-∞
|
-∞
|
0 |
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
0 |
-∞
|
-∞
|
-∞
|
|
[a#(x1)] |
= |
-∞
|
0 |
0 |
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
·
x1 +
0 |
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
|
[c#(x1)] |
= |
0 |
1 |
0 |
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
·
x1 +
0 |
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
|
[a(x1)] |
= |
0 |
1 |
0 |
1 |
-∞
|
0 |
0 |
0 |
0 |
0 |
0 |
0 |
-∞
|
0 |
0 |
0 |
·
x1 +
0 |
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
0 |
-∞
|
-∞
|
-∞
|
0 |
-∞
|
-∞
|
-∞
|
|
[c(x1)] |
= |
-∞
|
1 |
0 |
0 |
-∞
|
0 |
-∞
|
0 |
-∞
|
1 |
0 |
0 |
0 |
0 |
0 |
0 |
·
x1 +
0 |
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
-∞
|
0 |
-∞
|
-∞
|
-∞
|
0 |
-∞
|
-∞
|
-∞
|
|
together with the usable
rules
a(a(x0)) |
→ |
b(b(x0)) |
b(a(x0)) |
→ |
c(c(x0)) |
c(b(x0)) |
→ |
a(a(x0)) |
(w.r.t. the implicit argument filter of the reduction pair),
the
pairs
a#(a(x0)) |
→ |
b#(b(x0)) |
b#(a(x0)) |
→ |
c#(c(x0)) |
remain.
1.1.1.1.1 Dependency Graph Processor
The dependency pairs are split into 0
components.