NO
0 QTRS
↳1 DependencyPairsProof (⇔, 47 ms)
↳2 QDP
↳3 DependencyGraphProof (⇔, 0 ms)
↳4 AND
↳5 QDP
↳6 UsableRulesProof (⇔, 0 ms)
↳7 QDP
↳8 QDPSizeChangeProof (⇔, 0 ms)
↳9 YES
↳10 QDP
↳11 UsableRulesProof (⇔, 0 ms)
↳12 QDP
↳13 QDP
↳14 UsableRulesProof (⇔, 4 ms)
↳15 QDP
↳16 QDPSizeChangeProof (⇔, 0 ms)
↳17 YES
↳18 QDP
↳19 UsableRulesProof (⇔, 0 ms)
↳20 QDP
↳21 QDPSizeChangeProof (⇔, 0 ms)
↳22 YES
↳23 QDP
↳24 UsableRulesProof (⇔, 0 ms)
↳25 QDP
↳26 QDPSizeChangeProof (⇔, 0 ms)
↳27 YES
↳28 QDP
↳29 UsableRulesProof (⇔, 15 ms)
↳30 QDP
↳31 NonTerminationLoopProof (⇒, 97 ms)
↳32 NO
Begin(a(x)) → Wait(Right1(x))
Begin(c(x)) → Wait(Right2(x))
Begin(b(x)) → Wait(Right3(x))
Right1(a(End(x))) → Left(b(End(x)))
Right2(b(End(x))) → Left(a(End(x)))
Right3(c(End(x))) → Left(a(b(c(c(End(x))))))
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right1(c(x)) → Ac(Right1(x))
Right2(c(x)) → Ac(Right2(x))
Right3(c(x)) → Ac(Right3(x))
Aa(Left(x)) → Left(a(x))
Ab(Left(x)) → Left(b(x))
Ac(Left(x)) → Left(c(x))
Wait(Left(x)) → Begin(x)
a(a(x)) → b(x)
b(c(x)) → a(x)
c(b(x)) → a(b(c(c(x))))
BEGIN(a(x)) → WAIT(Right1(x))
BEGIN(a(x)) → RIGHT1(x)
BEGIN(c(x)) → WAIT(Right2(x))
BEGIN(c(x)) → RIGHT2(x)
BEGIN(b(x)) → WAIT(Right3(x))
BEGIN(b(x)) → RIGHT3(x)
RIGHT1(a(End(x))) → B(End(x))
RIGHT2(b(End(x))) → A(End(x))
RIGHT3(c(End(x))) → A(b(c(c(End(x)))))
RIGHT3(c(End(x))) → B(c(c(End(x))))
RIGHT3(c(End(x))) → C(c(End(x)))
RIGHT1(a(x)) → AA(Right1(x))
RIGHT1(a(x)) → RIGHT1(x)
RIGHT2(a(x)) → AA(Right2(x))
RIGHT2(a(x)) → RIGHT2(x)
RIGHT3(a(x)) → AA(Right3(x))
RIGHT3(a(x)) → RIGHT3(x)
RIGHT1(b(x)) → AB(Right1(x))
RIGHT1(b(x)) → RIGHT1(x)
RIGHT2(b(x)) → AB(Right2(x))
RIGHT2(b(x)) → RIGHT2(x)
RIGHT3(b(x)) → AB(Right3(x))
RIGHT3(b(x)) → RIGHT3(x)
RIGHT1(c(x)) → AC(Right1(x))
RIGHT1(c(x)) → RIGHT1(x)
RIGHT2(c(x)) → AC(Right2(x))
RIGHT2(c(x)) → RIGHT2(x)
RIGHT3(c(x)) → AC(Right3(x))
RIGHT3(c(x)) → RIGHT3(x)
AA(Left(x)) → A(x)
AB(Left(x)) → B(x)
AC(Left(x)) → C(x)
WAIT(Left(x)) → BEGIN(x)
A(a(x)) → B(x)
B(c(x)) → A(x)
C(b(x)) → A(b(c(c(x))))
C(b(x)) → B(c(c(x)))
C(b(x)) → C(c(x))
C(b(x)) → C(x)
Begin(a(x)) → Wait(Right1(x))
Begin(c(x)) → Wait(Right2(x))
Begin(b(x)) → Wait(Right3(x))
Right1(a(End(x))) → Left(b(End(x)))
Right2(b(End(x))) → Left(a(End(x)))
Right3(c(End(x))) → Left(a(b(c(c(End(x))))))
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right1(c(x)) → Ac(Right1(x))
Right2(c(x)) → Ac(Right2(x))
Right3(c(x)) → Ac(Right3(x))
Aa(Left(x)) → Left(a(x))
Ab(Left(x)) → Left(b(x))
Ac(Left(x)) → Left(c(x))
Wait(Left(x)) → Begin(x)
a(a(x)) → b(x)
b(c(x)) → a(x)
c(b(x)) → a(b(c(c(x))))
B(c(x)) → A(x)
A(a(x)) → B(x)
Begin(a(x)) → Wait(Right1(x))
Begin(c(x)) → Wait(Right2(x))
Begin(b(x)) → Wait(Right3(x))
Right1(a(End(x))) → Left(b(End(x)))
Right2(b(End(x))) → Left(a(End(x)))
Right3(c(End(x))) → Left(a(b(c(c(End(x))))))
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right1(c(x)) → Ac(Right1(x))
Right2(c(x)) → Ac(Right2(x))
Right3(c(x)) → Ac(Right3(x))
Aa(Left(x)) → Left(a(x))
Ab(Left(x)) → Left(b(x))
Ac(Left(x)) → Left(c(x))
Wait(Left(x)) → Begin(x)
a(a(x)) → b(x)
b(c(x)) → a(x)
c(b(x)) → a(b(c(c(x))))
B(c(x)) → A(x)
A(a(x)) → B(x)
From the DPs we obtained the following set of size-change graphs:
C(b(x)) → C(x)
C(b(x)) → C(c(x))
Begin(a(x)) → Wait(Right1(x))
Begin(c(x)) → Wait(Right2(x))
Begin(b(x)) → Wait(Right3(x))
Right1(a(End(x))) → Left(b(End(x)))
Right2(b(End(x))) → Left(a(End(x)))
Right3(c(End(x))) → Left(a(b(c(c(End(x))))))
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right1(c(x)) → Ac(Right1(x))
Right2(c(x)) → Ac(Right2(x))
Right3(c(x)) → Ac(Right3(x))
Aa(Left(x)) → Left(a(x))
Ab(Left(x)) → Left(b(x))
Ac(Left(x)) → Left(c(x))
Wait(Left(x)) → Begin(x)
a(a(x)) → b(x)
b(c(x)) → a(x)
c(b(x)) → a(b(c(c(x))))
C(b(x)) → C(x)
C(b(x)) → C(c(x))
c(b(x)) → a(b(c(c(x))))
b(c(x)) → a(x)
a(a(x)) → b(x)
RIGHT3(b(x)) → RIGHT3(x)
RIGHT3(a(x)) → RIGHT3(x)
RIGHT3(c(x)) → RIGHT3(x)
Begin(a(x)) → Wait(Right1(x))
Begin(c(x)) → Wait(Right2(x))
Begin(b(x)) → Wait(Right3(x))
Right1(a(End(x))) → Left(b(End(x)))
Right2(b(End(x))) → Left(a(End(x)))
Right3(c(End(x))) → Left(a(b(c(c(End(x))))))
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right1(c(x)) → Ac(Right1(x))
Right2(c(x)) → Ac(Right2(x))
Right3(c(x)) → Ac(Right3(x))
Aa(Left(x)) → Left(a(x))
Ab(Left(x)) → Left(b(x))
Ac(Left(x)) → Left(c(x))
Wait(Left(x)) → Begin(x)
a(a(x)) → b(x)
b(c(x)) → a(x)
c(b(x)) → a(b(c(c(x))))
RIGHT3(b(x)) → RIGHT3(x)
RIGHT3(a(x)) → RIGHT3(x)
RIGHT3(c(x)) → RIGHT3(x)
From the DPs we obtained the following set of size-change graphs:
RIGHT2(b(x)) → RIGHT2(x)
RIGHT2(a(x)) → RIGHT2(x)
RIGHT2(c(x)) → RIGHT2(x)
Begin(a(x)) → Wait(Right1(x))
Begin(c(x)) → Wait(Right2(x))
Begin(b(x)) → Wait(Right3(x))
Right1(a(End(x))) → Left(b(End(x)))
Right2(b(End(x))) → Left(a(End(x)))
Right3(c(End(x))) → Left(a(b(c(c(End(x))))))
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right1(c(x)) → Ac(Right1(x))
Right2(c(x)) → Ac(Right2(x))
Right3(c(x)) → Ac(Right3(x))
Aa(Left(x)) → Left(a(x))
Ab(Left(x)) → Left(b(x))
Ac(Left(x)) → Left(c(x))
Wait(Left(x)) → Begin(x)
a(a(x)) → b(x)
b(c(x)) → a(x)
c(b(x)) → a(b(c(c(x))))
RIGHT2(b(x)) → RIGHT2(x)
RIGHT2(a(x)) → RIGHT2(x)
RIGHT2(c(x)) → RIGHT2(x)
From the DPs we obtained the following set of size-change graphs:
RIGHT1(b(x)) → RIGHT1(x)
RIGHT1(a(x)) → RIGHT1(x)
RIGHT1(c(x)) → RIGHT1(x)
Begin(a(x)) → Wait(Right1(x))
Begin(c(x)) → Wait(Right2(x))
Begin(b(x)) → Wait(Right3(x))
Right1(a(End(x))) → Left(b(End(x)))
Right2(b(End(x))) → Left(a(End(x)))
Right3(c(End(x))) → Left(a(b(c(c(End(x))))))
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right1(c(x)) → Ac(Right1(x))
Right2(c(x)) → Ac(Right2(x))
Right3(c(x)) → Ac(Right3(x))
Aa(Left(x)) → Left(a(x))
Ab(Left(x)) → Left(b(x))
Ac(Left(x)) → Left(c(x))
Wait(Left(x)) → Begin(x)
a(a(x)) → b(x)
b(c(x)) → a(x)
c(b(x)) → a(b(c(c(x))))
RIGHT1(b(x)) → RIGHT1(x)
RIGHT1(a(x)) → RIGHT1(x)
RIGHT1(c(x)) → RIGHT1(x)
From the DPs we obtained the following set of size-change graphs:
WAIT(Left(x)) → BEGIN(x)
BEGIN(a(x)) → WAIT(Right1(x))
BEGIN(c(x)) → WAIT(Right2(x))
BEGIN(b(x)) → WAIT(Right3(x))
Begin(a(x)) → Wait(Right1(x))
Begin(c(x)) → Wait(Right2(x))
Begin(b(x)) → Wait(Right3(x))
Right1(a(End(x))) → Left(b(End(x)))
Right2(b(End(x))) → Left(a(End(x)))
Right3(c(End(x))) → Left(a(b(c(c(End(x))))))
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right1(c(x)) → Ac(Right1(x))
Right2(c(x)) → Ac(Right2(x))
Right3(c(x)) → Ac(Right3(x))
Aa(Left(x)) → Left(a(x))
Ab(Left(x)) → Left(b(x))
Ac(Left(x)) → Left(c(x))
Wait(Left(x)) → Begin(x)
a(a(x)) → b(x)
b(c(x)) → a(x)
c(b(x)) → a(b(c(c(x))))
WAIT(Left(x)) → BEGIN(x)
BEGIN(a(x)) → WAIT(Right1(x))
BEGIN(c(x)) → WAIT(Right2(x))
BEGIN(b(x)) → WAIT(Right3(x))
Right3(c(End(x))) → Left(a(b(c(c(End(x))))))
Right3(a(x)) → Aa(Right3(x))
Right3(b(x)) → Ab(Right3(x))
Right3(c(x)) → Ac(Right3(x))
Ac(Left(x)) → Left(c(x))
c(b(x)) → a(b(c(c(x))))
b(c(x)) → a(x)
a(a(x)) → b(x)
Ab(Left(x)) → Left(b(x))
Aa(Left(x)) → Left(a(x))
Right2(b(End(x))) → Left(a(End(x)))
Right2(a(x)) → Aa(Right2(x))
Right2(b(x)) → Ab(Right2(x))
Right2(c(x)) → Ac(Right2(x))
Right1(a(End(x))) → Left(b(End(x)))
Right1(a(x)) → Aa(Right1(x))
Right1(b(x)) → Ab(Right1(x))
Right1(c(x)) → Ac(Right1(x))