YES
0 QTRS
↳1 QTRS Reverse (⇔, 0 ms)
↳2 QTRS
↳3 FlatCCProof (⇔, 0 ms)
↳4 QTRS
↳5 RootLabelingProof (⇔, 0 ms)
↳6 QTRS
↳7 QTRSRRRProof (⇔, 25 ms)
↳8 QTRS
↳9 DependencyPairsProof (⇔, 0 ms)
↳10 QDP
↳11 DependencyGraphProof (⇔, 0 ms)
↳12 QDP
↳13 QDPOrderProof (⇔, 61 ms)
↳14 QDP
↳15 DependencyGraphProof (⇔, 0 ms)
↳16 AND
↳17 QDP
↳18 UsableRulesProof (⇔, 0 ms)
↳19 QDP
↳20 QDPSizeChangeProof (⇔, 0 ms)
↳21 YES
↳22 QDP
↳23 UsableRulesProof (⇔, 0 ms)
↳24 QDP
↳25 QDPSizeChangeProof (⇔, 0 ms)
↳26 YES
a(x) → x
a(x) → b(c(x))
b(b(x)) → a(a(x))
c(c(c(x))) → b(x)
a(x) → x
a(x) → c(b(x))
b(b(x)) → a(a(x))
c(c(c(x))) → b(x)
a(a(x)) → a(x)
c(a(x)) → c(x)
b(a(x)) → b(x)
a(a(x)) → a(c(b(x)))
c(a(x)) → c(c(b(x)))
b(a(x)) → b(c(b(x)))
a(b(b(x))) → a(a(a(x)))
c(b(b(x))) → c(a(a(x)))
b(b(b(x))) → b(a(a(x)))
a(c(c(c(x)))) → a(b(x))
c(c(c(c(x)))) → c(b(x))
b(c(c(c(x)))) → b(b(x))
a_{a_1}(a_{a_1}(x)) → a_{a_1}(x)
a_{a_1}(a_{c_1}(x)) → a_{c_1}(x)
a_{a_1}(a_{b_1}(x)) → a_{b_1}(x)
c_{a_1}(a_{a_1}(x)) → c_{a_1}(x)
c_{a_1}(a_{c_1}(x)) → c_{c_1}(x)
c_{a_1}(a_{b_1}(x)) → c_{b_1}(x)
b_{a_1}(a_{a_1}(x)) → b_{a_1}(x)
b_{a_1}(a_{c_1}(x)) → b_{c_1}(x)
b_{a_1}(a_{b_1}(x)) → b_{b_1}(x)
a_{a_1}(a_{a_1}(x)) → a_{c_1}(c_{b_1}(b_{a_1}(x)))
a_{a_1}(a_{c_1}(x)) → a_{c_1}(c_{b_1}(b_{c_1}(x)))
a_{a_1}(a_{b_1}(x)) → a_{c_1}(c_{b_1}(b_{b_1}(x)))
c_{a_1}(a_{a_1}(x)) → c_{c_1}(c_{b_1}(b_{a_1}(x)))
c_{a_1}(a_{c_1}(x)) → c_{c_1}(c_{b_1}(b_{c_1}(x)))
c_{a_1}(a_{b_1}(x)) → c_{c_1}(c_{b_1}(b_{b_1}(x)))
b_{a_1}(a_{a_1}(x)) → b_{c_1}(c_{b_1}(b_{a_1}(x)))
b_{a_1}(a_{c_1}(x)) → b_{c_1}(c_{b_1}(b_{c_1}(x)))
b_{a_1}(a_{b_1}(x)) → b_{c_1}(c_{b_1}(b_{b_1}(x)))
a_{b_1}(b_{b_1}(b_{a_1}(x))) → a_{a_1}(a_{a_1}(a_{a_1}(x)))
a_{b_1}(b_{b_1}(b_{c_1}(x))) → a_{a_1}(a_{a_1}(a_{c_1}(x)))
a_{b_1}(b_{b_1}(b_{b_1}(x))) → a_{a_1}(a_{a_1}(a_{b_1}(x)))
c_{b_1}(b_{b_1}(b_{a_1}(x))) → c_{a_1}(a_{a_1}(a_{a_1}(x)))
c_{b_1}(b_{b_1}(b_{c_1}(x))) → c_{a_1}(a_{a_1}(a_{c_1}(x)))
c_{b_1}(b_{b_1}(b_{b_1}(x))) → c_{a_1}(a_{a_1}(a_{b_1}(x)))
b_{b_1}(b_{b_1}(b_{a_1}(x))) → b_{a_1}(a_{a_1}(a_{a_1}(x)))
b_{b_1}(b_{b_1}(b_{c_1}(x))) → b_{a_1}(a_{a_1}(a_{c_1}(x)))
b_{b_1}(b_{b_1}(b_{b_1}(x))) → b_{a_1}(a_{a_1}(a_{b_1}(x)))
a_{c_1}(c_{c_1}(c_{c_1}(c_{a_1}(x)))) → a_{b_1}(b_{a_1}(x))
a_{c_1}(c_{c_1}(c_{c_1}(c_{c_1}(x)))) → a_{b_1}(b_{c_1}(x))
a_{c_1}(c_{c_1}(c_{c_1}(c_{b_1}(x)))) → a_{b_1}(b_{b_1}(x))
c_{c_1}(c_{c_1}(c_{c_1}(c_{a_1}(x)))) → c_{b_1}(b_{a_1}(x))
c_{c_1}(c_{c_1}(c_{c_1}(c_{c_1}(x)))) → c_{b_1}(b_{c_1}(x))
c_{c_1}(c_{c_1}(c_{c_1}(c_{b_1}(x)))) → c_{b_1}(b_{b_1}(x))
b_{c_1}(c_{c_1}(c_{c_1}(c_{a_1}(x)))) → b_{b_1}(b_{a_1}(x))
b_{c_1}(c_{c_1}(c_{c_1}(c_{c_1}(x)))) → b_{b_1}(b_{c_1}(x))
b_{c_1}(c_{c_1}(c_{c_1}(c_{b_1}(x)))) → b_{b_1}(b_{b_1}(x))
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(a_{a_1}(x1)) = x1
POL(a_{b_1}(x1)) = 1 + x1
POL(a_{c_1}(x1)) = x1
POL(b_{a_1}(x1)) = x1
POL(b_{b_1}(x1)) = 1 + x1
POL(b_{c_1}(x1)) = x1
POL(c_{a_1}(x1)) = 1 + x1
POL(c_{b_1}(x1)) = x1
POL(c_{c_1}(x1)) = 1 + x1
c_{a_1}(a_{b_1}(x)) → c_{b_1}(x)
a_{b_1}(b_{b_1}(b_{a_1}(x))) → a_{a_1}(a_{a_1}(a_{a_1}(x)))
a_{b_1}(b_{b_1}(b_{c_1}(x))) → a_{a_1}(a_{a_1}(a_{c_1}(x)))
a_{b_1}(b_{b_1}(b_{b_1}(x))) → a_{a_1}(a_{a_1}(a_{b_1}(x)))
b_{b_1}(b_{b_1}(b_{a_1}(x))) → b_{a_1}(a_{a_1}(a_{a_1}(x)))
b_{b_1}(b_{b_1}(b_{c_1}(x))) → b_{a_1}(a_{a_1}(a_{c_1}(x)))
b_{b_1}(b_{b_1}(b_{b_1}(x))) → b_{a_1}(a_{a_1}(a_{b_1}(x)))
a_{c_1}(c_{c_1}(c_{c_1}(c_{a_1}(x)))) → a_{b_1}(b_{a_1}(x))
a_{c_1}(c_{c_1}(c_{c_1}(c_{c_1}(x)))) → a_{b_1}(b_{c_1}(x))
c_{c_1}(c_{c_1}(c_{c_1}(c_{a_1}(x)))) → c_{b_1}(b_{a_1}(x))
c_{c_1}(c_{c_1}(c_{c_1}(c_{c_1}(x)))) → c_{b_1}(b_{c_1}(x))
c_{c_1}(c_{c_1}(c_{c_1}(c_{b_1}(x)))) → c_{b_1}(b_{b_1}(x))
b_{c_1}(c_{c_1}(c_{c_1}(c_{a_1}(x)))) → b_{b_1}(b_{a_1}(x))
b_{c_1}(c_{c_1}(c_{c_1}(c_{c_1}(x)))) → b_{b_1}(b_{c_1}(x))
a_{a_1}(a_{a_1}(x)) → a_{a_1}(x)
a_{a_1}(a_{c_1}(x)) → a_{c_1}(x)
a_{a_1}(a_{b_1}(x)) → a_{b_1}(x)
c_{a_1}(a_{a_1}(x)) → c_{a_1}(x)
c_{a_1}(a_{c_1}(x)) → c_{c_1}(x)
b_{a_1}(a_{a_1}(x)) → b_{a_1}(x)
b_{a_1}(a_{c_1}(x)) → b_{c_1}(x)
b_{a_1}(a_{b_1}(x)) → b_{b_1}(x)
a_{a_1}(a_{a_1}(x)) → a_{c_1}(c_{b_1}(b_{a_1}(x)))
a_{a_1}(a_{c_1}(x)) → a_{c_1}(c_{b_1}(b_{c_1}(x)))
a_{a_1}(a_{b_1}(x)) → a_{c_1}(c_{b_1}(b_{b_1}(x)))
c_{a_1}(a_{a_1}(x)) → c_{c_1}(c_{b_1}(b_{a_1}(x)))
c_{a_1}(a_{c_1}(x)) → c_{c_1}(c_{b_1}(b_{c_1}(x)))
c_{a_1}(a_{b_1}(x)) → c_{c_1}(c_{b_1}(b_{b_1}(x)))
b_{a_1}(a_{a_1}(x)) → b_{c_1}(c_{b_1}(b_{a_1}(x)))
b_{a_1}(a_{c_1}(x)) → b_{c_1}(c_{b_1}(b_{c_1}(x)))
b_{a_1}(a_{b_1}(x)) → b_{c_1}(c_{b_1}(b_{b_1}(x)))
c_{b_1}(b_{b_1}(b_{a_1}(x))) → c_{a_1}(a_{a_1}(a_{a_1}(x)))
c_{b_1}(b_{b_1}(b_{c_1}(x))) → c_{a_1}(a_{a_1}(a_{c_1}(x)))
c_{b_1}(b_{b_1}(b_{b_1}(x))) → c_{a_1}(a_{a_1}(a_{b_1}(x)))
a_{c_1}(c_{c_1}(c_{c_1}(c_{b_1}(x)))) → a_{b_1}(b_{b_1}(x))
b_{c_1}(c_{c_1}(c_{c_1}(c_{b_1}(x)))) → b_{b_1}(b_{b_1}(x))
C_{A_1}(a_{a_1}(x)) → C_{A_1}(x)
B_{A_1}(a_{a_1}(x)) → B_{A_1}(x)
B_{A_1}(a_{c_1}(x)) → B_{C_1}(x)
A_{A_1}(a_{a_1}(x)) → A_{C_1}(c_{b_1}(b_{a_1}(x)))
A_{A_1}(a_{a_1}(x)) → C_{B_1}(b_{a_1}(x))
A_{A_1}(a_{a_1}(x)) → B_{A_1}(x)
A_{A_1}(a_{c_1}(x)) → A_{C_1}(c_{b_1}(b_{c_1}(x)))
A_{A_1}(a_{c_1}(x)) → C_{B_1}(b_{c_1}(x))
A_{A_1}(a_{c_1}(x)) → B_{C_1}(x)
A_{A_1}(a_{b_1}(x)) → A_{C_1}(c_{b_1}(b_{b_1}(x)))
A_{A_1}(a_{b_1}(x)) → C_{B_1}(b_{b_1}(x))
C_{A_1}(a_{a_1}(x)) → C_{B_1}(b_{a_1}(x))
C_{A_1}(a_{a_1}(x)) → B_{A_1}(x)
C_{A_1}(a_{c_1}(x)) → C_{B_1}(b_{c_1}(x))
C_{A_1}(a_{c_1}(x)) → B_{C_1}(x)
C_{A_1}(a_{b_1}(x)) → C_{B_1}(b_{b_1}(x))
B_{A_1}(a_{a_1}(x)) → B_{C_1}(c_{b_1}(b_{a_1}(x)))
B_{A_1}(a_{a_1}(x)) → C_{B_1}(b_{a_1}(x))
B_{A_1}(a_{c_1}(x)) → B_{C_1}(c_{b_1}(b_{c_1}(x)))
B_{A_1}(a_{c_1}(x)) → C_{B_1}(b_{c_1}(x))
B_{A_1}(a_{b_1}(x)) → B_{C_1}(c_{b_1}(b_{b_1}(x)))
B_{A_1}(a_{b_1}(x)) → C_{B_1}(b_{b_1}(x))
C_{B_1}(b_{b_1}(b_{a_1}(x))) → C_{A_1}(a_{a_1}(a_{a_1}(x)))
C_{B_1}(b_{b_1}(b_{a_1}(x))) → A_{A_1}(a_{a_1}(x))
C_{B_1}(b_{b_1}(b_{a_1}(x))) → A_{A_1}(x)
C_{B_1}(b_{b_1}(b_{c_1}(x))) → C_{A_1}(a_{a_1}(a_{c_1}(x)))
C_{B_1}(b_{b_1}(b_{c_1}(x))) → A_{A_1}(a_{c_1}(x))
C_{B_1}(b_{b_1}(b_{c_1}(x))) → A_{C_1}(x)
C_{B_1}(b_{b_1}(b_{b_1}(x))) → C_{A_1}(a_{a_1}(a_{b_1}(x)))
C_{B_1}(b_{b_1}(b_{b_1}(x))) → A_{A_1}(a_{b_1}(x))
a_{a_1}(a_{a_1}(x)) → a_{a_1}(x)
a_{a_1}(a_{c_1}(x)) → a_{c_1}(x)
a_{a_1}(a_{b_1}(x)) → a_{b_1}(x)
c_{a_1}(a_{a_1}(x)) → c_{a_1}(x)
c_{a_1}(a_{c_1}(x)) → c_{c_1}(x)
b_{a_1}(a_{a_1}(x)) → b_{a_1}(x)
b_{a_1}(a_{c_1}(x)) → b_{c_1}(x)
b_{a_1}(a_{b_1}(x)) → b_{b_1}(x)
a_{a_1}(a_{a_1}(x)) → a_{c_1}(c_{b_1}(b_{a_1}(x)))
a_{a_1}(a_{c_1}(x)) → a_{c_1}(c_{b_1}(b_{c_1}(x)))
a_{a_1}(a_{b_1}(x)) → a_{c_1}(c_{b_1}(b_{b_1}(x)))
c_{a_1}(a_{a_1}(x)) → c_{c_1}(c_{b_1}(b_{a_1}(x)))
c_{a_1}(a_{c_1}(x)) → c_{c_1}(c_{b_1}(b_{c_1}(x)))
c_{a_1}(a_{b_1}(x)) → c_{c_1}(c_{b_1}(b_{b_1}(x)))
b_{a_1}(a_{a_1}(x)) → b_{c_1}(c_{b_1}(b_{a_1}(x)))
b_{a_1}(a_{c_1}(x)) → b_{c_1}(c_{b_1}(b_{c_1}(x)))
b_{a_1}(a_{b_1}(x)) → b_{c_1}(c_{b_1}(b_{b_1}(x)))
c_{b_1}(b_{b_1}(b_{a_1}(x))) → c_{a_1}(a_{a_1}(a_{a_1}(x)))
c_{b_1}(b_{b_1}(b_{c_1}(x))) → c_{a_1}(a_{a_1}(a_{c_1}(x)))
c_{b_1}(b_{b_1}(b_{b_1}(x))) → c_{a_1}(a_{a_1}(a_{b_1}(x)))
a_{c_1}(c_{c_1}(c_{c_1}(c_{b_1}(x)))) → a_{b_1}(b_{b_1}(x))
b_{c_1}(c_{c_1}(c_{c_1}(c_{b_1}(x)))) → b_{b_1}(b_{b_1}(x))
C_{A_1}(a_{a_1}(x)) → C_{B_1}(b_{a_1}(x))
C_{B_1}(b_{b_1}(b_{a_1}(x))) → C_{A_1}(a_{a_1}(a_{a_1}(x)))
C_{A_1}(a_{a_1}(x)) → C_{A_1}(x)
C_{A_1}(a_{a_1}(x)) → B_{A_1}(x)
B_{A_1}(a_{a_1}(x)) → B_{A_1}(x)
B_{A_1}(a_{a_1}(x)) → C_{B_1}(b_{a_1}(x))
C_{B_1}(b_{b_1}(b_{a_1}(x))) → A_{A_1}(a_{a_1}(x))
A_{A_1}(a_{a_1}(x)) → C_{B_1}(b_{a_1}(x))
C_{B_1}(b_{b_1}(b_{a_1}(x))) → A_{A_1}(x)
A_{A_1}(a_{a_1}(x)) → B_{A_1}(x)
B_{A_1}(a_{c_1}(x)) → C_{B_1}(b_{c_1}(x))
C_{B_1}(b_{b_1}(b_{c_1}(x))) → C_{A_1}(a_{a_1}(a_{c_1}(x)))
C_{A_1}(a_{c_1}(x)) → C_{B_1}(b_{c_1}(x))
C_{B_1}(b_{b_1}(b_{c_1}(x))) → A_{A_1}(a_{c_1}(x))
A_{A_1}(a_{c_1}(x)) → C_{B_1}(b_{c_1}(x))
C_{B_1}(b_{b_1}(b_{b_1}(x))) → C_{A_1}(a_{a_1}(a_{b_1}(x)))
C_{A_1}(a_{b_1}(x)) → C_{B_1}(b_{b_1}(x))
C_{B_1}(b_{b_1}(b_{b_1}(x))) → A_{A_1}(a_{b_1}(x))
A_{A_1}(a_{b_1}(x)) → C_{B_1}(b_{b_1}(x))
B_{A_1}(a_{b_1}(x)) → C_{B_1}(b_{b_1}(x))
a_{a_1}(a_{a_1}(x)) → a_{a_1}(x)
a_{a_1}(a_{c_1}(x)) → a_{c_1}(x)
a_{a_1}(a_{b_1}(x)) → a_{b_1}(x)
c_{a_1}(a_{a_1}(x)) → c_{a_1}(x)
c_{a_1}(a_{c_1}(x)) → c_{c_1}(x)
b_{a_1}(a_{a_1}(x)) → b_{a_1}(x)
b_{a_1}(a_{c_1}(x)) → b_{c_1}(x)
b_{a_1}(a_{b_1}(x)) → b_{b_1}(x)
a_{a_1}(a_{a_1}(x)) → a_{c_1}(c_{b_1}(b_{a_1}(x)))
a_{a_1}(a_{c_1}(x)) → a_{c_1}(c_{b_1}(b_{c_1}(x)))
a_{a_1}(a_{b_1}(x)) → a_{c_1}(c_{b_1}(b_{b_1}(x)))
c_{a_1}(a_{a_1}(x)) → c_{c_1}(c_{b_1}(b_{a_1}(x)))
c_{a_1}(a_{c_1}(x)) → c_{c_1}(c_{b_1}(b_{c_1}(x)))
c_{a_1}(a_{b_1}(x)) → c_{c_1}(c_{b_1}(b_{b_1}(x)))
b_{a_1}(a_{a_1}(x)) → b_{c_1}(c_{b_1}(b_{a_1}(x)))
b_{a_1}(a_{c_1}(x)) → b_{c_1}(c_{b_1}(b_{c_1}(x)))
b_{a_1}(a_{b_1}(x)) → b_{c_1}(c_{b_1}(b_{b_1}(x)))
c_{b_1}(b_{b_1}(b_{a_1}(x))) → c_{a_1}(a_{a_1}(a_{a_1}(x)))
c_{b_1}(b_{b_1}(b_{c_1}(x))) → c_{a_1}(a_{a_1}(a_{c_1}(x)))
c_{b_1}(b_{b_1}(b_{b_1}(x))) → c_{a_1}(a_{a_1}(a_{b_1}(x)))
a_{c_1}(c_{c_1}(c_{c_1}(c_{b_1}(x)))) → a_{b_1}(b_{b_1}(x))
b_{c_1}(c_{c_1}(c_{c_1}(c_{b_1}(x)))) → b_{b_1}(b_{b_1}(x))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
C_{B_1}(b_{b_1}(b_{a_1}(x))) → C_{A_1}(a_{a_1}(a_{a_1}(x)))
C_{B_1}(b_{b_1}(b_{a_1}(x))) → A_{A_1}(a_{a_1}(x))
C_{B_1}(b_{b_1}(b_{a_1}(x))) → A_{A_1}(x)
C_{B_1}(b_{b_1}(b_{c_1}(x))) → C_{A_1}(a_{a_1}(a_{c_1}(x)))
C_{B_1}(b_{b_1}(b_{c_1}(x))) → A_{A_1}(a_{c_1}(x))
C_{B_1}(b_{b_1}(b_{b_1}(x))) → C_{A_1}(a_{a_1}(a_{b_1}(x)))
C_{B_1}(b_{b_1}(b_{b_1}(x))) → A_{A_1}(a_{b_1}(x))
POL(A_{A_1}(x1)) = x1
POL(B_{A_1}(x1)) = x1
POL(C_{A_1}(x1)) = x1
POL(C_{B_1}(x1)) = x1
POL(a_{a_1}(x1)) = x1
POL(a_{b_1}(x1)) = 1 + x1
POL(a_{c_1}(x1)) = x1
POL(b_{a_1}(x1)) = x1
POL(b_{b_1}(x1)) = 1 + x1
POL(b_{c_1}(x1)) = x1
POL(c_{a_1}(x1)) = 1 + x1
POL(c_{b_1}(x1)) = x1
POL(c_{c_1}(x1)) = 1 + x1
b_{a_1}(a_{a_1}(x)) → b_{a_1}(x)
b_{a_1}(a_{c_1}(x)) → b_{c_1}(x)
b_{a_1}(a_{b_1}(x)) → b_{b_1}(x)
b_{a_1}(a_{a_1}(x)) → b_{c_1}(c_{b_1}(b_{a_1}(x)))
b_{a_1}(a_{c_1}(x)) → b_{c_1}(c_{b_1}(b_{c_1}(x)))
b_{a_1}(a_{b_1}(x)) → b_{c_1}(c_{b_1}(b_{b_1}(x)))
a_{a_1}(a_{a_1}(x)) → a_{a_1}(x)
a_{a_1}(a_{c_1}(x)) → a_{c_1}(x)
a_{a_1}(a_{b_1}(x)) → a_{b_1}(x)
a_{a_1}(a_{a_1}(x)) → a_{c_1}(c_{b_1}(b_{a_1}(x)))
a_{a_1}(a_{c_1}(x)) → a_{c_1}(c_{b_1}(b_{c_1}(x)))
a_{a_1}(a_{b_1}(x)) → a_{c_1}(c_{b_1}(b_{b_1}(x)))
b_{c_1}(c_{c_1}(c_{c_1}(c_{b_1}(x)))) → b_{b_1}(b_{b_1}(x))
a_{c_1}(c_{c_1}(c_{c_1}(c_{b_1}(x)))) → a_{b_1}(b_{b_1}(x))
c_{b_1}(b_{b_1}(b_{a_1}(x))) → c_{a_1}(a_{a_1}(a_{a_1}(x)))
c_{b_1}(b_{b_1}(b_{c_1}(x))) → c_{a_1}(a_{a_1}(a_{c_1}(x)))
c_{b_1}(b_{b_1}(b_{b_1}(x))) → c_{a_1}(a_{a_1}(a_{b_1}(x)))
c_{a_1}(a_{a_1}(x)) → c_{a_1}(x)
c_{a_1}(a_{a_1}(x)) → c_{c_1}(c_{b_1}(b_{a_1}(x)))
c_{a_1}(a_{c_1}(x)) → c_{c_1}(c_{b_1}(b_{c_1}(x)))
c_{a_1}(a_{b_1}(x)) → c_{c_1}(c_{b_1}(b_{b_1}(x)))
c_{a_1}(a_{c_1}(x)) → c_{c_1}(x)
C_{A_1}(a_{a_1}(x)) → C_{B_1}(b_{a_1}(x))
C_{A_1}(a_{a_1}(x)) → C_{A_1}(x)
C_{A_1}(a_{a_1}(x)) → B_{A_1}(x)
B_{A_1}(a_{a_1}(x)) → B_{A_1}(x)
B_{A_1}(a_{a_1}(x)) → C_{B_1}(b_{a_1}(x))
A_{A_1}(a_{a_1}(x)) → C_{B_1}(b_{a_1}(x))
A_{A_1}(a_{a_1}(x)) → B_{A_1}(x)
B_{A_1}(a_{c_1}(x)) → C_{B_1}(b_{c_1}(x))
C_{A_1}(a_{c_1}(x)) → C_{B_1}(b_{c_1}(x))
A_{A_1}(a_{c_1}(x)) → C_{B_1}(b_{c_1}(x))
C_{A_1}(a_{b_1}(x)) → C_{B_1}(b_{b_1}(x))
A_{A_1}(a_{b_1}(x)) → C_{B_1}(b_{b_1}(x))
B_{A_1}(a_{b_1}(x)) → C_{B_1}(b_{b_1}(x))
a_{a_1}(a_{a_1}(x)) → a_{a_1}(x)
a_{a_1}(a_{c_1}(x)) → a_{c_1}(x)
a_{a_1}(a_{b_1}(x)) → a_{b_1}(x)
c_{a_1}(a_{a_1}(x)) → c_{a_1}(x)
c_{a_1}(a_{c_1}(x)) → c_{c_1}(x)
b_{a_1}(a_{a_1}(x)) → b_{a_1}(x)
b_{a_1}(a_{c_1}(x)) → b_{c_1}(x)
b_{a_1}(a_{b_1}(x)) → b_{b_1}(x)
a_{a_1}(a_{a_1}(x)) → a_{c_1}(c_{b_1}(b_{a_1}(x)))
a_{a_1}(a_{c_1}(x)) → a_{c_1}(c_{b_1}(b_{c_1}(x)))
a_{a_1}(a_{b_1}(x)) → a_{c_1}(c_{b_1}(b_{b_1}(x)))
c_{a_1}(a_{a_1}(x)) → c_{c_1}(c_{b_1}(b_{a_1}(x)))
c_{a_1}(a_{c_1}(x)) → c_{c_1}(c_{b_1}(b_{c_1}(x)))
c_{a_1}(a_{b_1}(x)) → c_{c_1}(c_{b_1}(b_{b_1}(x)))
b_{a_1}(a_{a_1}(x)) → b_{c_1}(c_{b_1}(b_{a_1}(x)))
b_{a_1}(a_{c_1}(x)) → b_{c_1}(c_{b_1}(b_{c_1}(x)))
b_{a_1}(a_{b_1}(x)) → b_{c_1}(c_{b_1}(b_{b_1}(x)))
c_{b_1}(b_{b_1}(b_{a_1}(x))) → c_{a_1}(a_{a_1}(a_{a_1}(x)))
c_{b_1}(b_{b_1}(b_{c_1}(x))) → c_{a_1}(a_{a_1}(a_{c_1}(x)))
c_{b_1}(b_{b_1}(b_{b_1}(x))) → c_{a_1}(a_{a_1}(a_{b_1}(x)))
a_{c_1}(c_{c_1}(c_{c_1}(c_{b_1}(x)))) → a_{b_1}(b_{b_1}(x))
b_{c_1}(c_{c_1}(c_{c_1}(c_{b_1}(x)))) → b_{b_1}(b_{b_1}(x))
B_{A_1}(a_{a_1}(x)) → B_{A_1}(x)
a_{a_1}(a_{a_1}(x)) → a_{a_1}(x)
a_{a_1}(a_{c_1}(x)) → a_{c_1}(x)
a_{a_1}(a_{b_1}(x)) → a_{b_1}(x)
c_{a_1}(a_{a_1}(x)) → c_{a_1}(x)
c_{a_1}(a_{c_1}(x)) → c_{c_1}(x)
b_{a_1}(a_{a_1}(x)) → b_{a_1}(x)
b_{a_1}(a_{c_1}(x)) → b_{c_1}(x)
b_{a_1}(a_{b_1}(x)) → b_{b_1}(x)
a_{a_1}(a_{a_1}(x)) → a_{c_1}(c_{b_1}(b_{a_1}(x)))
a_{a_1}(a_{c_1}(x)) → a_{c_1}(c_{b_1}(b_{c_1}(x)))
a_{a_1}(a_{b_1}(x)) → a_{c_1}(c_{b_1}(b_{b_1}(x)))
c_{a_1}(a_{a_1}(x)) → c_{c_1}(c_{b_1}(b_{a_1}(x)))
c_{a_1}(a_{c_1}(x)) → c_{c_1}(c_{b_1}(b_{c_1}(x)))
c_{a_1}(a_{b_1}(x)) → c_{c_1}(c_{b_1}(b_{b_1}(x)))
b_{a_1}(a_{a_1}(x)) → b_{c_1}(c_{b_1}(b_{a_1}(x)))
b_{a_1}(a_{c_1}(x)) → b_{c_1}(c_{b_1}(b_{c_1}(x)))
b_{a_1}(a_{b_1}(x)) → b_{c_1}(c_{b_1}(b_{b_1}(x)))
c_{b_1}(b_{b_1}(b_{a_1}(x))) → c_{a_1}(a_{a_1}(a_{a_1}(x)))
c_{b_1}(b_{b_1}(b_{c_1}(x))) → c_{a_1}(a_{a_1}(a_{c_1}(x)))
c_{b_1}(b_{b_1}(b_{b_1}(x))) → c_{a_1}(a_{a_1}(a_{b_1}(x)))
a_{c_1}(c_{c_1}(c_{c_1}(c_{b_1}(x)))) → a_{b_1}(b_{b_1}(x))
b_{c_1}(c_{c_1}(c_{c_1}(c_{b_1}(x)))) → b_{b_1}(b_{b_1}(x))
B_{A_1}(a_{a_1}(x)) → B_{A_1}(x)
From the DPs we obtained the following set of size-change graphs:
C_{A_1}(a_{a_1}(x)) → C_{A_1}(x)
a_{a_1}(a_{a_1}(x)) → a_{a_1}(x)
a_{a_1}(a_{c_1}(x)) → a_{c_1}(x)
a_{a_1}(a_{b_1}(x)) → a_{b_1}(x)
c_{a_1}(a_{a_1}(x)) → c_{a_1}(x)
c_{a_1}(a_{c_1}(x)) → c_{c_1}(x)
b_{a_1}(a_{a_1}(x)) → b_{a_1}(x)
b_{a_1}(a_{c_1}(x)) → b_{c_1}(x)
b_{a_1}(a_{b_1}(x)) → b_{b_1}(x)
a_{a_1}(a_{a_1}(x)) → a_{c_1}(c_{b_1}(b_{a_1}(x)))
a_{a_1}(a_{c_1}(x)) → a_{c_1}(c_{b_1}(b_{c_1}(x)))
a_{a_1}(a_{b_1}(x)) → a_{c_1}(c_{b_1}(b_{b_1}(x)))
c_{a_1}(a_{a_1}(x)) → c_{c_1}(c_{b_1}(b_{a_1}(x)))
c_{a_1}(a_{c_1}(x)) → c_{c_1}(c_{b_1}(b_{c_1}(x)))
c_{a_1}(a_{b_1}(x)) → c_{c_1}(c_{b_1}(b_{b_1}(x)))
b_{a_1}(a_{a_1}(x)) → b_{c_1}(c_{b_1}(b_{a_1}(x)))
b_{a_1}(a_{c_1}(x)) → b_{c_1}(c_{b_1}(b_{c_1}(x)))
b_{a_1}(a_{b_1}(x)) → b_{c_1}(c_{b_1}(b_{b_1}(x)))
c_{b_1}(b_{b_1}(b_{a_1}(x))) → c_{a_1}(a_{a_1}(a_{a_1}(x)))
c_{b_1}(b_{b_1}(b_{c_1}(x))) → c_{a_1}(a_{a_1}(a_{c_1}(x)))
c_{b_1}(b_{b_1}(b_{b_1}(x))) → c_{a_1}(a_{a_1}(a_{b_1}(x)))
a_{c_1}(c_{c_1}(c_{c_1}(c_{b_1}(x)))) → a_{b_1}(b_{b_1}(x))
b_{c_1}(c_{c_1}(c_{c_1}(c_{b_1}(x)))) → b_{b_1}(b_{b_1}(x))
C_{A_1}(a_{a_1}(x)) → C_{A_1}(x)
From the DPs we obtained the following set of size-change graphs: