NO
0 QTRS
↳1 DependencyPairsProof (⇔, 0 ms)
↳2 QDP
↳3 DependencyGraphProof (⇔, 6 ms)
↳4 AND
↳5 QDP
↳6 UsableRulesProof (⇔, 0 ms)
↳7 QDP
↳8 MRRProof (⇔, 108 ms)
↳9 QDP
↳10 QDP
↳11 UsableRulesProof (⇔, 0 ms)
↳12 QDP
↳13 QDPSizeChangeProof (⇔, 0 ms)
↳14 YES
↳15 QDP
↳16 UsableRulesProof (⇔, 0 ms)
↳17 QDP
↳18 QDPSizeChangeProof (⇔, 0 ms)
↳19 YES
↳20 QDP
↳21 UsableRulesProof (⇔, 0 ms)
↳22 QDP
↳23 QDPSizeChangeProof (⇔, 0 ms)
↳24 YES
↳25 QDP
↳26 UsableRulesProof (⇔, 0 ms)
↳27 QDP
↳28 NonTerminationLoopProof (⇒, 92 ms)
↳29 NO
Begin(b(x)) → Wait(Right1(x))
Begin(a(c(x))) → Wait(Right2(x))
Begin(c(x)) → Wait(Right3(x))
Right1(b(End(x))) → Left(c(End(x)))
Right2(c(End(x))) → Left(a(b(c(a(End(x))))))
Right3(c(a(End(x)))) → Left(a(b(c(a(End(x))))))
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right1(c(x)) → Ac(Right1(x))
Right2(c(x)) → Ac(Right2(x))
Right3(c(x)) → Ac(Right3(x))
Aa(Left(x)) → Left(a(x))
Ab(Left(x)) → Left(b(x))
Ac(Left(x)) → Left(c(x))
Wait(Left(x)) → Begin(x)
a(x) → b(x)
b(b(x)) → c(x)
c(a(c(x))) → a(b(c(a(x))))
BEGIN(b(x)) → WAIT(Right1(x))
BEGIN(b(x)) → RIGHT1(x)
BEGIN(a(c(x))) → WAIT(Right2(x))
BEGIN(a(c(x))) → RIGHT2(x)
BEGIN(c(x)) → WAIT(Right3(x))
BEGIN(c(x)) → RIGHT3(x)
RIGHT1(b(End(x))) → C(End(x))
RIGHT2(c(End(x))) → A(b(c(a(End(x)))))
RIGHT2(c(End(x))) → B(c(a(End(x))))
RIGHT2(c(End(x))) → C(a(End(x)))
RIGHT2(c(End(x))) → A(End(x))
RIGHT3(c(a(End(x)))) → A(b(c(a(End(x)))))
RIGHT3(c(a(End(x)))) → B(c(a(End(x))))
RIGHT1(a(x)) → AA(Right1(x))
RIGHT1(a(x)) → RIGHT1(x)
RIGHT2(a(x)) → AA(Right2(x))
RIGHT2(a(x)) → RIGHT2(x)
RIGHT3(a(x)) → AA(Right3(x))
RIGHT3(a(x)) → RIGHT3(x)
RIGHT1(b(x)) → AB(Right1(x))
RIGHT1(b(x)) → RIGHT1(x)
RIGHT2(b(x)) → AB(Right2(x))
RIGHT2(b(x)) → RIGHT2(x)
RIGHT3(b(x)) → AB(Right3(x))
RIGHT3(b(x)) → RIGHT3(x)
RIGHT1(c(x)) → AC(Right1(x))
RIGHT1(c(x)) → RIGHT1(x)
RIGHT2(c(x)) → AC(Right2(x))
RIGHT2(c(x)) → RIGHT2(x)
RIGHT3(c(x)) → AC(Right3(x))
RIGHT3(c(x)) → RIGHT3(x)
AA(Left(x)) → A(x)
AB(Left(x)) → B(x)
AC(Left(x)) → C(x)
WAIT(Left(x)) → BEGIN(x)
A(x) → B(x)
B(b(x)) → C(x)
C(a(c(x))) → A(b(c(a(x))))
C(a(c(x))) → B(c(a(x)))
C(a(c(x))) → C(a(x))
C(a(c(x))) → A(x)
Begin(b(x)) → Wait(Right1(x))
Begin(a(c(x))) → Wait(Right2(x))
Begin(c(x)) → Wait(Right3(x))
Right1(b(End(x))) → Left(c(End(x)))
Right2(c(End(x))) → Left(a(b(c(a(End(x))))))
Right3(c(a(End(x)))) → Left(a(b(c(a(End(x))))))
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right1(c(x)) → Ac(Right1(x))
Right2(c(x)) → Ac(Right2(x))
Right3(c(x)) → Ac(Right3(x))
Aa(Left(x)) → Left(a(x))
Ab(Left(x)) → Left(b(x))
Ac(Left(x)) → Left(c(x))
Wait(Left(x)) → Begin(x)
a(x) → b(x)
b(b(x)) → c(x)
c(a(c(x))) → a(b(c(a(x))))
B(b(x)) → C(x)
C(a(c(x))) → A(b(c(a(x))))
A(x) → B(x)
C(a(c(x))) → B(c(a(x)))
C(a(c(x))) → C(a(x))
C(a(c(x))) → A(x)
Begin(b(x)) → Wait(Right1(x))
Begin(a(c(x))) → Wait(Right2(x))
Begin(c(x)) → Wait(Right3(x))
Right1(b(End(x))) → Left(c(End(x)))
Right2(c(End(x))) → Left(a(b(c(a(End(x))))))
Right3(c(a(End(x)))) → Left(a(b(c(a(End(x))))))
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right1(c(x)) → Ac(Right1(x))
Right2(c(x)) → Ac(Right2(x))
Right3(c(x)) → Ac(Right3(x))
Aa(Left(x)) → Left(a(x))
Ab(Left(x)) → Left(b(x))
Ac(Left(x)) → Left(c(x))
Wait(Left(x)) → Begin(x)
a(x) → b(x)
b(b(x)) → c(x)
c(a(c(x))) → a(b(c(a(x))))
B(b(x)) → C(x)
C(a(c(x))) → A(b(c(a(x))))
A(x) → B(x)
C(a(c(x))) → B(c(a(x)))
C(a(c(x))) → C(a(x))
C(a(c(x))) → A(x)
b(b(x)) → c(x)
c(a(c(x))) → a(b(c(a(x))))
a(x) → b(x)
C(a(c(x))) → B(c(a(x)))
C(a(c(x))) → C(a(x))
C(a(c(x))) → A(x)
POL(A(x1)) = 1 + x1
POL(B(x1)) = 1 + x1
POL(C(x1)) = 2 + x1
POL(a(x1)) = 1 + x1
POL(b(x1)) = 1 + x1
POL(c(x1)) = 2 + x1
B(b(x)) → C(x)
C(a(c(x))) → A(b(c(a(x))))
A(x) → B(x)
b(b(x)) → c(x)
c(a(c(x))) → a(b(c(a(x))))
a(x) → b(x)
RIGHT3(b(x)) → RIGHT3(x)
RIGHT3(a(x)) → RIGHT3(x)
RIGHT3(c(x)) → RIGHT3(x)
Begin(b(x)) → Wait(Right1(x))
Begin(a(c(x))) → Wait(Right2(x))
Begin(c(x)) → Wait(Right3(x))
Right1(b(End(x))) → Left(c(End(x)))
Right2(c(End(x))) → Left(a(b(c(a(End(x))))))
Right3(c(a(End(x)))) → Left(a(b(c(a(End(x))))))
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right1(c(x)) → Ac(Right1(x))
Right2(c(x)) → Ac(Right2(x))
Right3(c(x)) → Ac(Right3(x))
Aa(Left(x)) → Left(a(x))
Ab(Left(x)) → Left(b(x))
Ac(Left(x)) → Left(c(x))
Wait(Left(x)) → Begin(x)
a(x) → b(x)
b(b(x)) → c(x)
c(a(c(x))) → a(b(c(a(x))))
RIGHT3(b(x)) → RIGHT3(x)
RIGHT3(a(x)) → RIGHT3(x)
RIGHT3(c(x)) → RIGHT3(x)
From the DPs we obtained the following set of size-change graphs:
RIGHT2(b(x)) → RIGHT2(x)
RIGHT2(a(x)) → RIGHT2(x)
RIGHT2(c(x)) → RIGHT2(x)
Begin(b(x)) → Wait(Right1(x))
Begin(a(c(x))) → Wait(Right2(x))
Begin(c(x)) → Wait(Right3(x))
Right1(b(End(x))) → Left(c(End(x)))
Right2(c(End(x))) → Left(a(b(c(a(End(x))))))
Right3(c(a(End(x)))) → Left(a(b(c(a(End(x))))))
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right1(c(x)) → Ac(Right1(x))
Right2(c(x)) → Ac(Right2(x))
Right3(c(x)) → Ac(Right3(x))
Aa(Left(x)) → Left(a(x))
Ab(Left(x)) → Left(b(x))
Ac(Left(x)) → Left(c(x))
Wait(Left(x)) → Begin(x)
a(x) → b(x)
b(b(x)) → c(x)
c(a(c(x))) → a(b(c(a(x))))
RIGHT2(b(x)) → RIGHT2(x)
RIGHT2(a(x)) → RIGHT2(x)
RIGHT2(c(x)) → RIGHT2(x)
From the DPs we obtained the following set of size-change graphs:
RIGHT1(b(x)) → RIGHT1(x)
RIGHT1(a(x)) → RIGHT1(x)
RIGHT1(c(x)) → RIGHT1(x)
Begin(b(x)) → Wait(Right1(x))
Begin(a(c(x))) → Wait(Right2(x))
Begin(c(x)) → Wait(Right3(x))
Right1(b(End(x))) → Left(c(End(x)))
Right2(c(End(x))) → Left(a(b(c(a(End(x))))))
Right3(c(a(End(x)))) → Left(a(b(c(a(End(x))))))
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right1(c(x)) → Ac(Right1(x))
Right2(c(x)) → Ac(Right2(x))
Right3(c(x)) → Ac(Right3(x))
Aa(Left(x)) → Left(a(x))
Ab(Left(x)) → Left(b(x))
Ac(Left(x)) → Left(c(x))
Wait(Left(x)) → Begin(x)
a(x) → b(x)
b(b(x)) → c(x)
c(a(c(x))) → a(b(c(a(x))))
RIGHT1(b(x)) → RIGHT1(x)
RIGHT1(a(x)) → RIGHT1(x)
RIGHT1(c(x)) → RIGHT1(x)
From the DPs we obtained the following set of size-change graphs:
WAIT(Left(x)) → BEGIN(x)
BEGIN(b(x)) → WAIT(Right1(x))
BEGIN(a(c(x))) → WAIT(Right2(x))
BEGIN(c(x)) → WAIT(Right3(x))
Begin(b(x)) → Wait(Right1(x))
Begin(a(c(x))) → Wait(Right2(x))
Begin(c(x)) → Wait(Right3(x))
Right1(b(End(x))) → Left(c(End(x)))
Right2(c(End(x))) → Left(a(b(c(a(End(x))))))
Right3(c(a(End(x)))) → Left(a(b(c(a(End(x))))))
Right1(a(x)) → Aa(Right1(x))
Right2(a(x)) → Aa(Right2(x))
Right3(a(x)) → Aa(Right3(x))
Right1(b(x)) → Ab(Right1(x))
Right2(b(x)) → Ab(Right2(x))
Right3(b(x)) → Ab(Right3(x))
Right1(c(x)) → Ac(Right1(x))
Right2(c(x)) → Ac(Right2(x))
Right3(c(x)) → Ac(Right3(x))
Aa(Left(x)) → Left(a(x))
Ab(Left(x)) → Left(b(x))
Ac(Left(x)) → Left(c(x))
Wait(Left(x)) → Begin(x)
a(x) → b(x)
b(b(x)) → c(x)
c(a(c(x))) → a(b(c(a(x))))
WAIT(Left(x)) → BEGIN(x)
BEGIN(b(x)) → WAIT(Right1(x))
BEGIN(a(c(x))) → WAIT(Right2(x))
BEGIN(c(x)) → WAIT(Right3(x))
Right3(c(a(End(x)))) → Left(a(b(c(a(End(x))))))
Right3(a(x)) → Aa(Right3(x))
Right3(b(x)) → Ab(Right3(x))
Right3(c(x)) → Ac(Right3(x))
Ac(Left(x)) → Left(c(x))
b(b(x)) → c(x)
c(a(c(x))) → a(b(c(a(x))))
a(x) → b(x)
Ab(Left(x)) → Left(b(x))
Aa(Left(x)) → Left(a(x))
Right2(c(End(x))) → Left(a(b(c(a(End(x))))))
Right2(a(x)) → Aa(Right2(x))
Right2(b(x)) → Ab(Right2(x))
Right2(c(x)) → Ac(Right2(x))
Right1(b(End(x))) → Left(c(End(x)))
Right1(a(x)) → Aa(Right1(x))
Right1(b(x)) → Ab(Right1(x))
Right1(c(x)) → Ac(Right1(x))