YES
0 QTRS
↳1 QTRS Reverse (⇔, 0 ms)
↳2 QTRS
↳3 FlatCCProof (⇔, 0 ms)
↳4 QTRS
↳5 RootLabelingProof (⇔, 0 ms)
↳6 QTRS
↳7 QTRSRRRProof (⇔, 33 ms)
↳8 QTRS
↳9 DependencyPairsProof (⇔, 0 ms)
↳10 QDP
↳11 DependencyGraphProof (⇔, 0 ms)
↳12 AND
↳13 QDP
↳14 UsableRulesProof (⇔, 0 ms)
↳15 QDP
↳16 QDPSizeChangeProof (⇔, 0 ms)
↳17 YES
↳18 QDP
↳19 UsableRulesProof (⇔, 0 ms)
↳20 QDP
↳21 QDPSizeChangeProof (⇔, 0 ms)
↳22 YES
↳23 QDP
↳24 UsableRulesProof (⇔, 0 ms)
↳25 QDP
↳26 QDPOrderProof (⇔, 57 ms)
↳27 QDP
↳28 PisEmptyProof (⇔, 0 ms)
↳29 YES
a(x) → x
a(b(x)) → c(a(x))
c(c(x)) → c(b(c(b(a(x)))))
a(x) → x
b(a(x)) → a(c(x))
c(c(x)) → a(b(c(b(c(x)))))
a(a(x)) → a(x)
b(a(x)) → b(x)
c(a(x)) → c(x)
a(b(a(x))) → a(a(c(x)))
b(b(a(x))) → b(a(c(x)))
c(b(a(x))) → c(a(c(x)))
a(c(c(x))) → a(a(b(c(b(c(x))))))
b(c(c(x))) → b(a(b(c(b(c(x))))))
c(c(c(x))) → c(a(b(c(b(c(x))))))
a_{a_1}(a_{a_1}(x)) → a_{a_1}(x)
a_{a_1}(a_{b_1}(x)) → a_{b_1}(x)
a_{a_1}(a_{c_1}(x)) → a_{c_1}(x)
b_{a_1}(a_{a_1}(x)) → b_{a_1}(x)
b_{a_1}(a_{b_1}(x)) → b_{b_1}(x)
b_{a_1}(a_{c_1}(x)) → b_{c_1}(x)
c_{a_1}(a_{a_1}(x)) → c_{a_1}(x)
c_{a_1}(a_{b_1}(x)) → c_{b_1}(x)
c_{a_1}(a_{c_1}(x)) → c_{c_1}(x)
a_{b_1}(b_{a_1}(a_{a_1}(x))) → a_{a_1}(a_{c_1}(c_{a_1}(x)))
a_{b_1}(b_{a_1}(a_{b_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(x)))
a_{b_1}(b_{a_1}(a_{c_1}(x))) → a_{a_1}(a_{c_1}(c_{c_1}(x)))
b_{b_1}(b_{a_1}(a_{a_1}(x))) → b_{a_1}(a_{c_1}(c_{a_1}(x)))
b_{b_1}(b_{a_1}(a_{b_1}(x))) → b_{a_1}(a_{c_1}(c_{b_1}(x)))
b_{b_1}(b_{a_1}(a_{c_1}(x))) → b_{a_1}(a_{c_1}(c_{c_1}(x)))
c_{b_1}(b_{a_1}(a_{a_1}(x))) → c_{a_1}(a_{c_1}(c_{a_1}(x)))
c_{b_1}(b_{a_1}(a_{b_1}(x))) → c_{a_1}(a_{c_1}(c_{b_1}(x)))
c_{b_1}(b_{a_1}(a_{c_1}(x))) → c_{a_1}(a_{c_1}(c_{c_1}(x)))
a_{c_1}(c_{c_1}(c_{a_1}(x))) → a_{a_1}(a_{b_1}(b_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x))))))
a_{c_1}(c_{c_1}(c_{b_1}(x))) → a_{a_1}(a_{b_1}(b_{c_1}(c_{b_1}(b_{c_1}(c_{b_1}(x))))))
a_{c_1}(c_{c_1}(c_{c_1}(x))) → a_{a_1}(a_{b_1}(b_{c_1}(c_{b_1}(b_{c_1}(c_{c_1}(x))))))
b_{c_1}(c_{c_1}(c_{a_1}(x))) → b_{a_1}(a_{b_1}(b_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x))))))
b_{c_1}(c_{c_1}(c_{b_1}(x))) → b_{a_1}(a_{b_1}(b_{c_1}(c_{b_1}(b_{c_1}(c_{b_1}(x))))))
b_{c_1}(c_{c_1}(c_{c_1}(x))) → b_{a_1}(a_{b_1}(b_{c_1}(c_{b_1}(b_{c_1}(c_{c_1}(x))))))
c_{c_1}(c_{c_1}(c_{a_1}(x))) → c_{a_1}(a_{b_1}(b_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x))))))
c_{c_1}(c_{c_1}(c_{b_1}(x))) → c_{a_1}(a_{b_1}(b_{c_1}(c_{b_1}(b_{c_1}(c_{b_1}(x))))))
c_{c_1}(c_{c_1}(c_{c_1}(x))) → c_{a_1}(a_{b_1}(b_{c_1}(c_{b_1}(b_{c_1}(c_{c_1}(x))))))
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(a_{a_1}(x1)) = x1
POL(a_{b_1}(x1)) = x1
POL(a_{c_1}(x1)) = 1 + x1
POL(b_{a_1}(x1)) = 1 + x1
POL(b_{b_1}(x1)) = 1 + x1
POL(b_{c_1}(x1)) = x1
POL(c_{a_1}(x1)) = x1
POL(c_{b_1}(x1)) = x1
POL(c_{c_1}(x1)) = 1 + x1
b_{a_1}(a_{c_1}(x)) → b_{c_1}(x)
a_{c_1}(c_{c_1}(c_{a_1}(x))) → a_{a_1}(a_{b_1}(b_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x))))))
a_{c_1}(c_{c_1}(c_{b_1}(x))) → a_{a_1}(a_{b_1}(b_{c_1}(c_{b_1}(b_{c_1}(c_{b_1}(x))))))
a_{c_1}(c_{c_1}(c_{c_1}(x))) → a_{a_1}(a_{b_1}(b_{c_1}(c_{b_1}(b_{c_1}(c_{c_1}(x))))))
c_{c_1}(c_{c_1}(c_{a_1}(x))) → c_{a_1}(a_{b_1}(b_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x))))))
c_{c_1}(c_{c_1}(c_{b_1}(x))) → c_{a_1}(a_{b_1}(b_{c_1}(c_{b_1}(b_{c_1}(c_{b_1}(x))))))
c_{c_1}(c_{c_1}(c_{c_1}(x))) → c_{a_1}(a_{b_1}(b_{c_1}(c_{b_1}(b_{c_1}(c_{c_1}(x))))))
a_{a_1}(a_{a_1}(x)) → a_{a_1}(x)
a_{a_1}(a_{b_1}(x)) → a_{b_1}(x)
a_{a_1}(a_{c_1}(x)) → a_{c_1}(x)
b_{a_1}(a_{a_1}(x)) → b_{a_1}(x)
b_{a_1}(a_{b_1}(x)) → b_{b_1}(x)
c_{a_1}(a_{a_1}(x)) → c_{a_1}(x)
c_{a_1}(a_{b_1}(x)) → c_{b_1}(x)
c_{a_1}(a_{c_1}(x)) → c_{c_1}(x)
a_{b_1}(b_{a_1}(a_{a_1}(x))) → a_{a_1}(a_{c_1}(c_{a_1}(x)))
a_{b_1}(b_{a_1}(a_{b_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(x)))
a_{b_1}(b_{a_1}(a_{c_1}(x))) → a_{a_1}(a_{c_1}(c_{c_1}(x)))
b_{b_1}(b_{a_1}(a_{a_1}(x))) → b_{a_1}(a_{c_1}(c_{a_1}(x)))
b_{b_1}(b_{a_1}(a_{b_1}(x))) → b_{a_1}(a_{c_1}(c_{b_1}(x)))
b_{b_1}(b_{a_1}(a_{c_1}(x))) → b_{a_1}(a_{c_1}(c_{c_1}(x)))
c_{b_1}(b_{a_1}(a_{a_1}(x))) → c_{a_1}(a_{c_1}(c_{a_1}(x)))
c_{b_1}(b_{a_1}(a_{b_1}(x))) → c_{a_1}(a_{c_1}(c_{b_1}(x)))
c_{b_1}(b_{a_1}(a_{c_1}(x))) → c_{a_1}(a_{c_1}(c_{c_1}(x)))
b_{c_1}(c_{c_1}(c_{a_1}(x))) → b_{a_1}(a_{b_1}(b_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x))))))
b_{c_1}(c_{c_1}(c_{b_1}(x))) → b_{a_1}(a_{b_1}(b_{c_1}(c_{b_1}(b_{c_1}(c_{b_1}(x))))))
b_{c_1}(c_{c_1}(c_{c_1}(x))) → b_{a_1}(a_{b_1}(b_{c_1}(c_{b_1}(b_{c_1}(c_{c_1}(x))))))
B_{A_1}(a_{a_1}(x)) → B_{A_1}(x)
B_{A_1}(a_{b_1}(x)) → B_{B_1}(x)
C_{A_1}(a_{a_1}(x)) → C_{A_1}(x)
C_{A_1}(a_{b_1}(x)) → C_{B_1}(x)
A_{B_1}(b_{a_1}(a_{a_1}(x))) → A_{A_1}(a_{c_1}(c_{a_1}(x)))
A_{B_1}(b_{a_1}(a_{a_1}(x))) → C_{A_1}(x)
A_{B_1}(b_{a_1}(a_{b_1}(x))) → A_{A_1}(a_{c_1}(c_{b_1}(x)))
A_{B_1}(b_{a_1}(a_{b_1}(x))) → C_{B_1}(x)
A_{B_1}(b_{a_1}(a_{c_1}(x))) → A_{A_1}(a_{c_1}(c_{c_1}(x)))
B_{B_1}(b_{a_1}(a_{a_1}(x))) → B_{A_1}(a_{c_1}(c_{a_1}(x)))
B_{B_1}(b_{a_1}(a_{a_1}(x))) → C_{A_1}(x)
B_{B_1}(b_{a_1}(a_{b_1}(x))) → B_{A_1}(a_{c_1}(c_{b_1}(x)))
B_{B_1}(b_{a_1}(a_{b_1}(x))) → C_{B_1}(x)
B_{B_1}(b_{a_1}(a_{c_1}(x))) → B_{A_1}(a_{c_1}(c_{c_1}(x)))
C_{B_1}(b_{a_1}(a_{a_1}(x))) → C_{A_1}(a_{c_1}(c_{a_1}(x)))
C_{B_1}(b_{a_1}(a_{a_1}(x))) → C_{A_1}(x)
C_{B_1}(b_{a_1}(a_{b_1}(x))) → C_{A_1}(a_{c_1}(c_{b_1}(x)))
C_{B_1}(b_{a_1}(a_{b_1}(x))) → C_{B_1}(x)
C_{B_1}(b_{a_1}(a_{c_1}(x))) → C_{A_1}(a_{c_1}(c_{c_1}(x)))
B_{C_1}(c_{c_1}(c_{a_1}(x))) → B_{A_1}(a_{b_1}(b_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x))))))
B_{C_1}(c_{c_1}(c_{a_1}(x))) → A_{B_1}(b_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x)))))
B_{C_1}(c_{c_1}(c_{a_1}(x))) → B_{C_1}(c_{b_1}(b_{c_1}(c_{a_1}(x))))
B_{C_1}(c_{c_1}(c_{a_1}(x))) → C_{B_1}(b_{c_1}(c_{a_1}(x)))
B_{C_1}(c_{c_1}(c_{a_1}(x))) → B_{C_1}(c_{a_1}(x))
B_{C_1}(c_{c_1}(c_{b_1}(x))) → B_{A_1}(a_{b_1}(b_{c_1}(c_{b_1}(b_{c_1}(c_{b_1}(x))))))
B_{C_1}(c_{c_1}(c_{b_1}(x))) → A_{B_1}(b_{c_1}(c_{b_1}(b_{c_1}(c_{b_1}(x)))))
B_{C_1}(c_{c_1}(c_{b_1}(x))) → B_{C_1}(c_{b_1}(b_{c_1}(c_{b_1}(x))))
B_{C_1}(c_{c_1}(c_{b_1}(x))) → C_{B_1}(b_{c_1}(c_{b_1}(x)))
B_{C_1}(c_{c_1}(c_{b_1}(x))) → B_{C_1}(c_{b_1}(x))
B_{C_1}(c_{c_1}(c_{c_1}(x))) → B_{A_1}(a_{b_1}(b_{c_1}(c_{b_1}(b_{c_1}(c_{c_1}(x))))))
B_{C_1}(c_{c_1}(c_{c_1}(x))) → A_{B_1}(b_{c_1}(c_{b_1}(b_{c_1}(c_{c_1}(x)))))
B_{C_1}(c_{c_1}(c_{c_1}(x))) → B_{C_1}(c_{b_1}(b_{c_1}(c_{c_1}(x))))
B_{C_1}(c_{c_1}(c_{c_1}(x))) → C_{B_1}(b_{c_1}(c_{c_1}(x)))
B_{C_1}(c_{c_1}(c_{c_1}(x))) → B_{C_1}(c_{c_1}(x))
a_{a_1}(a_{a_1}(x)) → a_{a_1}(x)
a_{a_1}(a_{b_1}(x)) → a_{b_1}(x)
a_{a_1}(a_{c_1}(x)) → a_{c_1}(x)
b_{a_1}(a_{a_1}(x)) → b_{a_1}(x)
b_{a_1}(a_{b_1}(x)) → b_{b_1}(x)
c_{a_1}(a_{a_1}(x)) → c_{a_1}(x)
c_{a_1}(a_{b_1}(x)) → c_{b_1}(x)
c_{a_1}(a_{c_1}(x)) → c_{c_1}(x)
a_{b_1}(b_{a_1}(a_{a_1}(x))) → a_{a_1}(a_{c_1}(c_{a_1}(x)))
a_{b_1}(b_{a_1}(a_{b_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(x)))
a_{b_1}(b_{a_1}(a_{c_1}(x))) → a_{a_1}(a_{c_1}(c_{c_1}(x)))
b_{b_1}(b_{a_1}(a_{a_1}(x))) → b_{a_1}(a_{c_1}(c_{a_1}(x)))
b_{b_1}(b_{a_1}(a_{b_1}(x))) → b_{a_1}(a_{c_1}(c_{b_1}(x)))
b_{b_1}(b_{a_1}(a_{c_1}(x))) → b_{a_1}(a_{c_1}(c_{c_1}(x)))
c_{b_1}(b_{a_1}(a_{a_1}(x))) → c_{a_1}(a_{c_1}(c_{a_1}(x)))
c_{b_1}(b_{a_1}(a_{b_1}(x))) → c_{a_1}(a_{c_1}(c_{b_1}(x)))
c_{b_1}(b_{a_1}(a_{c_1}(x))) → c_{a_1}(a_{c_1}(c_{c_1}(x)))
b_{c_1}(c_{c_1}(c_{a_1}(x))) → b_{a_1}(a_{b_1}(b_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x))))))
b_{c_1}(c_{c_1}(c_{b_1}(x))) → b_{a_1}(a_{b_1}(b_{c_1}(c_{b_1}(b_{c_1}(c_{b_1}(x))))))
b_{c_1}(c_{c_1}(c_{c_1}(x))) → b_{a_1}(a_{b_1}(b_{c_1}(c_{b_1}(b_{c_1}(c_{c_1}(x))))))
C_{A_1}(a_{b_1}(x)) → C_{B_1}(x)
C_{B_1}(b_{a_1}(a_{a_1}(x))) → C_{A_1}(x)
C_{A_1}(a_{a_1}(x)) → C_{A_1}(x)
C_{B_1}(b_{a_1}(a_{b_1}(x))) → C_{B_1}(x)
a_{a_1}(a_{a_1}(x)) → a_{a_1}(x)
a_{a_1}(a_{b_1}(x)) → a_{b_1}(x)
a_{a_1}(a_{c_1}(x)) → a_{c_1}(x)
b_{a_1}(a_{a_1}(x)) → b_{a_1}(x)
b_{a_1}(a_{b_1}(x)) → b_{b_1}(x)
c_{a_1}(a_{a_1}(x)) → c_{a_1}(x)
c_{a_1}(a_{b_1}(x)) → c_{b_1}(x)
c_{a_1}(a_{c_1}(x)) → c_{c_1}(x)
a_{b_1}(b_{a_1}(a_{a_1}(x))) → a_{a_1}(a_{c_1}(c_{a_1}(x)))
a_{b_1}(b_{a_1}(a_{b_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(x)))
a_{b_1}(b_{a_1}(a_{c_1}(x))) → a_{a_1}(a_{c_1}(c_{c_1}(x)))
b_{b_1}(b_{a_1}(a_{a_1}(x))) → b_{a_1}(a_{c_1}(c_{a_1}(x)))
b_{b_1}(b_{a_1}(a_{b_1}(x))) → b_{a_1}(a_{c_1}(c_{b_1}(x)))
b_{b_1}(b_{a_1}(a_{c_1}(x))) → b_{a_1}(a_{c_1}(c_{c_1}(x)))
c_{b_1}(b_{a_1}(a_{a_1}(x))) → c_{a_1}(a_{c_1}(c_{a_1}(x)))
c_{b_1}(b_{a_1}(a_{b_1}(x))) → c_{a_1}(a_{c_1}(c_{b_1}(x)))
c_{b_1}(b_{a_1}(a_{c_1}(x))) → c_{a_1}(a_{c_1}(c_{c_1}(x)))
b_{c_1}(c_{c_1}(c_{a_1}(x))) → b_{a_1}(a_{b_1}(b_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x))))))
b_{c_1}(c_{c_1}(c_{b_1}(x))) → b_{a_1}(a_{b_1}(b_{c_1}(c_{b_1}(b_{c_1}(c_{b_1}(x))))))
b_{c_1}(c_{c_1}(c_{c_1}(x))) → b_{a_1}(a_{b_1}(b_{c_1}(c_{b_1}(b_{c_1}(c_{c_1}(x))))))
C_{A_1}(a_{b_1}(x)) → C_{B_1}(x)
C_{B_1}(b_{a_1}(a_{a_1}(x))) → C_{A_1}(x)
C_{A_1}(a_{a_1}(x)) → C_{A_1}(x)
C_{B_1}(b_{a_1}(a_{b_1}(x))) → C_{B_1}(x)
From the DPs we obtained the following set of size-change graphs:
B_{A_1}(a_{a_1}(x)) → B_{A_1}(x)
a_{a_1}(a_{a_1}(x)) → a_{a_1}(x)
a_{a_1}(a_{b_1}(x)) → a_{b_1}(x)
a_{a_1}(a_{c_1}(x)) → a_{c_1}(x)
b_{a_1}(a_{a_1}(x)) → b_{a_1}(x)
b_{a_1}(a_{b_1}(x)) → b_{b_1}(x)
c_{a_1}(a_{a_1}(x)) → c_{a_1}(x)
c_{a_1}(a_{b_1}(x)) → c_{b_1}(x)
c_{a_1}(a_{c_1}(x)) → c_{c_1}(x)
a_{b_1}(b_{a_1}(a_{a_1}(x))) → a_{a_1}(a_{c_1}(c_{a_1}(x)))
a_{b_1}(b_{a_1}(a_{b_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(x)))
a_{b_1}(b_{a_1}(a_{c_1}(x))) → a_{a_1}(a_{c_1}(c_{c_1}(x)))
b_{b_1}(b_{a_1}(a_{a_1}(x))) → b_{a_1}(a_{c_1}(c_{a_1}(x)))
b_{b_1}(b_{a_1}(a_{b_1}(x))) → b_{a_1}(a_{c_1}(c_{b_1}(x)))
b_{b_1}(b_{a_1}(a_{c_1}(x))) → b_{a_1}(a_{c_1}(c_{c_1}(x)))
c_{b_1}(b_{a_1}(a_{a_1}(x))) → c_{a_1}(a_{c_1}(c_{a_1}(x)))
c_{b_1}(b_{a_1}(a_{b_1}(x))) → c_{a_1}(a_{c_1}(c_{b_1}(x)))
c_{b_1}(b_{a_1}(a_{c_1}(x))) → c_{a_1}(a_{c_1}(c_{c_1}(x)))
b_{c_1}(c_{c_1}(c_{a_1}(x))) → b_{a_1}(a_{b_1}(b_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x))))))
b_{c_1}(c_{c_1}(c_{b_1}(x))) → b_{a_1}(a_{b_1}(b_{c_1}(c_{b_1}(b_{c_1}(c_{b_1}(x))))))
b_{c_1}(c_{c_1}(c_{c_1}(x))) → b_{a_1}(a_{b_1}(b_{c_1}(c_{b_1}(b_{c_1}(c_{c_1}(x))))))
B_{A_1}(a_{a_1}(x)) → B_{A_1}(x)
From the DPs we obtained the following set of size-change graphs:
B_{C_1}(c_{c_1}(c_{a_1}(x))) → B_{C_1}(c_{a_1}(x))
B_{C_1}(c_{c_1}(c_{a_1}(x))) → B_{C_1}(c_{b_1}(b_{c_1}(c_{a_1}(x))))
B_{C_1}(c_{c_1}(c_{b_1}(x))) → B_{C_1}(c_{b_1}(b_{c_1}(c_{b_1}(x))))
B_{C_1}(c_{c_1}(c_{b_1}(x))) → B_{C_1}(c_{b_1}(x))
B_{C_1}(c_{c_1}(c_{c_1}(x))) → B_{C_1}(c_{b_1}(b_{c_1}(c_{c_1}(x))))
B_{C_1}(c_{c_1}(c_{c_1}(x))) → B_{C_1}(c_{c_1}(x))
a_{a_1}(a_{a_1}(x)) → a_{a_1}(x)
a_{a_1}(a_{b_1}(x)) → a_{b_1}(x)
a_{a_1}(a_{c_1}(x)) → a_{c_1}(x)
b_{a_1}(a_{a_1}(x)) → b_{a_1}(x)
b_{a_1}(a_{b_1}(x)) → b_{b_1}(x)
c_{a_1}(a_{a_1}(x)) → c_{a_1}(x)
c_{a_1}(a_{b_1}(x)) → c_{b_1}(x)
c_{a_1}(a_{c_1}(x)) → c_{c_1}(x)
a_{b_1}(b_{a_1}(a_{a_1}(x))) → a_{a_1}(a_{c_1}(c_{a_1}(x)))
a_{b_1}(b_{a_1}(a_{b_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(x)))
a_{b_1}(b_{a_1}(a_{c_1}(x))) → a_{a_1}(a_{c_1}(c_{c_1}(x)))
b_{b_1}(b_{a_1}(a_{a_1}(x))) → b_{a_1}(a_{c_1}(c_{a_1}(x)))
b_{b_1}(b_{a_1}(a_{b_1}(x))) → b_{a_1}(a_{c_1}(c_{b_1}(x)))
b_{b_1}(b_{a_1}(a_{c_1}(x))) → b_{a_1}(a_{c_1}(c_{c_1}(x)))
c_{b_1}(b_{a_1}(a_{a_1}(x))) → c_{a_1}(a_{c_1}(c_{a_1}(x)))
c_{b_1}(b_{a_1}(a_{b_1}(x))) → c_{a_1}(a_{c_1}(c_{b_1}(x)))
c_{b_1}(b_{a_1}(a_{c_1}(x))) → c_{a_1}(a_{c_1}(c_{c_1}(x)))
b_{c_1}(c_{c_1}(c_{a_1}(x))) → b_{a_1}(a_{b_1}(b_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x))))))
b_{c_1}(c_{c_1}(c_{b_1}(x))) → b_{a_1}(a_{b_1}(b_{c_1}(c_{b_1}(b_{c_1}(c_{b_1}(x))))))
b_{c_1}(c_{c_1}(c_{c_1}(x))) → b_{a_1}(a_{b_1}(b_{c_1}(c_{b_1}(b_{c_1}(c_{c_1}(x))))))
B_{C_1}(c_{c_1}(c_{a_1}(x))) → B_{C_1}(c_{a_1}(x))
B_{C_1}(c_{c_1}(c_{a_1}(x))) → B_{C_1}(c_{b_1}(b_{c_1}(c_{a_1}(x))))
B_{C_1}(c_{c_1}(c_{b_1}(x))) → B_{C_1}(c_{b_1}(b_{c_1}(c_{b_1}(x))))
B_{C_1}(c_{c_1}(c_{b_1}(x))) → B_{C_1}(c_{b_1}(x))
B_{C_1}(c_{c_1}(c_{c_1}(x))) → B_{C_1}(c_{b_1}(b_{c_1}(c_{c_1}(x))))
B_{C_1}(c_{c_1}(c_{c_1}(x))) → B_{C_1}(c_{c_1}(x))
b_{c_1}(c_{c_1}(c_{a_1}(x))) → b_{a_1}(a_{b_1}(b_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x))))))
b_{c_1}(c_{c_1}(c_{b_1}(x))) → b_{a_1}(a_{b_1}(b_{c_1}(c_{b_1}(b_{c_1}(c_{b_1}(x))))))
b_{c_1}(c_{c_1}(c_{c_1}(x))) → b_{a_1}(a_{b_1}(b_{c_1}(c_{b_1}(b_{c_1}(c_{c_1}(x))))))
c_{b_1}(b_{a_1}(a_{a_1}(x))) → c_{a_1}(a_{c_1}(c_{a_1}(x)))
c_{b_1}(b_{a_1}(a_{b_1}(x))) → c_{a_1}(a_{c_1}(c_{b_1}(x)))
c_{b_1}(b_{a_1}(a_{c_1}(x))) → c_{a_1}(a_{c_1}(c_{c_1}(x)))
c_{a_1}(a_{c_1}(x)) → c_{c_1}(x)
c_{a_1}(a_{a_1}(x)) → c_{a_1}(x)
c_{a_1}(a_{b_1}(x)) → c_{b_1}(x)
a_{b_1}(b_{a_1}(a_{a_1}(x))) → a_{a_1}(a_{c_1}(c_{a_1}(x)))
a_{b_1}(b_{a_1}(a_{b_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(x)))
a_{b_1}(b_{a_1}(a_{c_1}(x))) → a_{a_1}(a_{c_1}(c_{c_1}(x)))
b_{a_1}(a_{a_1}(x)) → b_{a_1}(x)
b_{a_1}(a_{b_1}(x)) → b_{b_1}(x)
b_{b_1}(b_{a_1}(a_{a_1}(x))) → b_{a_1}(a_{c_1}(c_{a_1}(x)))
b_{b_1}(b_{a_1}(a_{b_1}(x))) → b_{a_1}(a_{c_1}(c_{b_1}(x)))
b_{b_1}(b_{a_1}(a_{c_1}(x))) → b_{a_1}(a_{c_1}(c_{c_1}(x)))
a_{a_1}(a_{c_1}(x)) → a_{c_1}(x)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
B_{C_1}(c_{c_1}(c_{a_1}(x))) → B_{C_1}(c_{a_1}(x))
B_{C_1}(c_{c_1}(c_{a_1}(x))) → B_{C_1}(c_{b_1}(b_{c_1}(c_{a_1}(x))))
B_{C_1}(c_{c_1}(c_{b_1}(x))) → B_{C_1}(c_{b_1}(b_{c_1}(c_{b_1}(x))))
B_{C_1}(c_{c_1}(c_{b_1}(x))) → B_{C_1}(c_{b_1}(x))
B_{C_1}(c_{c_1}(c_{c_1}(x))) → B_{C_1}(c_{b_1}(b_{c_1}(c_{c_1}(x))))
B_{C_1}(c_{c_1}(c_{c_1}(x))) → B_{C_1}(c_{c_1}(x))
POL(B_{C_1}(x1)) = x1
POL(a_{a_1}(x1)) = x1
POL(a_{b_1}(x1)) = x1
POL(a_{c_1}(x1)) = 1 + x1
POL(b_{a_1}(x1)) = 1 + x1
POL(b_{b_1}(x1)) = 1 + x1
POL(b_{c_1}(x1)) = x1
POL(c_{a_1}(x1)) = x1
POL(c_{b_1}(x1)) = x1
POL(c_{c_1}(x1)) = 1 + x1
c_{a_1}(a_{c_1}(x)) → c_{c_1}(x)
c_{a_1}(a_{a_1}(x)) → c_{a_1}(x)
c_{a_1}(a_{b_1}(x)) → c_{b_1}(x)
b_{c_1}(c_{c_1}(c_{a_1}(x))) → b_{a_1}(a_{b_1}(b_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x))))))
b_{c_1}(c_{c_1}(c_{b_1}(x))) → b_{a_1}(a_{b_1}(b_{c_1}(c_{b_1}(b_{c_1}(c_{b_1}(x))))))
b_{c_1}(c_{c_1}(c_{c_1}(x))) → b_{a_1}(a_{b_1}(b_{c_1}(c_{b_1}(b_{c_1}(c_{c_1}(x))))))
c_{b_1}(b_{a_1}(a_{a_1}(x))) → c_{a_1}(a_{c_1}(c_{a_1}(x)))
c_{b_1}(b_{a_1}(a_{b_1}(x))) → c_{a_1}(a_{c_1}(c_{b_1}(x)))
c_{b_1}(b_{a_1}(a_{c_1}(x))) → c_{a_1}(a_{c_1}(c_{c_1}(x)))
a_{b_1}(b_{a_1}(a_{a_1}(x))) → a_{a_1}(a_{c_1}(c_{a_1}(x)))
a_{b_1}(b_{a_1}(a_{b_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(x)))
a_{b_1}(b_{a_1}(a_{c_1}(x))) → a_{a_1}(a_{c_1}(c_{c_1}(x)))
b_{a_1}(a_{a_1}(x)) → b_{a_1}(x)
b_{a_1}(a_{b_1}(x)) → b_{b_1}(x)
a_{a_1}(a_{c_1}(x)) → a_{c_1}(x)
b_{b_1}(b_{a_1}(a_{a_1}(x))) → b_{a_1}(a_{c_1}(c_{a_1}(x)))
b_{b_1}(b_{a_1}(a_{b_1}(x))) → b_{a_1}(a_{c_1}(c_{b_1}(x)))
b_{b_1}(b_{a_1}(a_{c_1}(x))) → b_{a_1}(a_{c_1}(c_{c_1}(x)))
b_{c_1}(c_{c_1}(c_{a_1}(x))) → b_{a_1}(a_{b_1}(b_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x))))))
b_{c_1}(c_{c_1}(c_{b_1}(x))) → b_{a_1}(a_{b_1}(b_{c_1}(c_{b_1}(b_{c_1}(c_{b_1}(x))))))
b_{c_1}(c_{c_1}(c_{c_1}(x))) → b_{a_1}(a_{b_1}(b_{c_1}(c_{b_1}(b_{c_1}(c_{c_1}(x))))))
c_{b_1}(b_{a_1}(a_{a_1}(x))) → c_{a_1}(a_{c_1}(c_{a_1}(x)))
c_{b_1}(b_{a_1}(a_{b_1}(x))) → c_{a_1}(a_{c_1}(c_{b_1}(x)))
c_{b_1}(b_{a_1}(a_{c_1}(x))) → c_{a_1}(a_{c_1}(c_{c_1}(x)))
c_{a_1}(a_{c_1}(x)) → c_{c_1}(x)
c_{a_1}(a_{a_1}(x)) → c_{a_1}(x)
c_{a_1}(a_{b_1}(x)) → c_{b_1}(x)
a_{b_1}(b_{a_1}(a_{a_1}(x))) → a_{a_1}(a_{c_1}(c_{a_1}(x)))
a_{b_1}(b_{a_1}(a_{b_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(x)))
a_{b_1}(b_{a_1}(a_{c_1}(x))) → a_{a_1}(a_{c_1}(c_{c_1}(x)))
b_{a_1}(a_{a_1}(x)) → b_{a_1}(x)
b_{a_1}(a_{b_1}(x)) → b_{b_1}(x)
b_{b_1}(b_{a_1}(a_{a_1}(x))) → b_{a_1}(a_{c_1}(c_{a_1}(x)))
b_{b_1}(b_{a_1}(a_{b_1}(x))) → b_{a_1}(a_{c_1}(c_{b_1}(x)))
b_{b_1}(b_{a_1}(a_{c_1}(x))) → b_{a_1}(a_{c_1}(c_{c_1}(x)))
a_{a_1}(a_{c_1}(x)) → a_{c_1}(x)