YES
0 QTRS
↳1 QTRS Reverse (⇔, 0 ms)
↳2 QTRS
↳3 FlatCCProof (⇔, 0 ms)
↳4 QTRS
↳5 RootLabelingProof (⇔, 0 ms)
↳6 QTRS
↳7 QTRSRRRProof (⇔, 52 ms)
↳8 QTRS
↳9 DependencyPairsProof (⇔, 0 ms)
↳10 QDP
↳11 DependencyGraphProof (⇔, 0 ms)
↳12 QDP
↳13 QDPOrderProof (⇔, 67 ms)
↳14 QDP
↳15 DependencyGraphProof (⇔, 0 ms)
↳16 TRUE
a(x) → x
a(b(x)) → b(c(a(x)))
c(c(a(x))) → a(b(a(x)))
a(x) → x
b(a(x)) → a(c(b(x)))
a(c(c(x))) → a(b(a(x)))
a(c(c(x))) → a(b(a(x)))
a(a(x)) → a(x)
b(a(x)) → b(x)
c(a(x)) → c(x)
a(b(a(x))) → a(a(c(b(x))))
b(b(a(x))) → b(a(c(b(x))))
c(b(a(x))) → c(a(c(b(x))))
a_{c_1}(c_{c_1}(c_{a_1}(x))) → a_{b_1}(b_{a_1}(a_{a_1}(x)))
a_{c_1}(c_{c_1}(c_{c_1}(x))) → a_{b_1}(b_{a_1}(a_{c_1}(x)))
a_{c_1}(c_{c_1}(c_{b_1}(x))) → a_{b_1}(b_{a_1}(a_{b_1}(x)))
a_{a_1}(a_{a_1}(x)) → a_{a_1}(x)
a_{a_1}(a_{c_1}(x)) → a_{c_1}(x)
a_{a_1}(a_{b_1}(x)) → a_{b_1}(x)
b_{a_1}(a_{a_1}(x)) → b_{a_1}(x)
b_{a_1}(a_{c_1}(x)) → b_{c_1}(x)
b_{a_1}(a_{b_1}(x)) → b_{b_1}(x)
c_{a_1}(a_{a_1}(x)) → c_{a_1}(x)
c_{a_1}(a_{c_1}(x)) → c_{c_1}(x)
c_{a_1}(a_{b_1}(x)) → c_{b_1}(x)
a_{b_1}(b_{a_1}(a_{a_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x))))
a_{b_1}(b_{a_1}(a_{c_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x))))
a_{b_1}(b_{a_1}(a_{b_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x))))
b_{b_1}(b_{a_1}(a_{a_1}(x))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x))))
b_{b_1}(b_{a_1}(a_{c_1}(x))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x))))
b_{b_1}(b_{a_1}(a_{b_1}(x))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x))))
c_{b_1}(b_{a_1}(a_{a_1}(x))) → c_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x))))
c_{b_1}(b_{a_1}(a_{c_1}(x))) → c_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x))))
c_{b_1}(b_{a_1}(a_{b_1}(x))) → c_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x))))
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(a_{a_1}(x1)) = 1 + x1
POL(a_{b_1}(x1)) = 1 + x1
POL(a_{c_1}(x1)) = 1 + x1
POL(b_{a_1}(x1)) = x1
POL(b_{b_1}(x1)) = x1
POL(b_{c_1}(x1)) = x1
POL(c_{a_1}(x1)) = x1
POL(c_{b_1}(x1)) = x1
POL(c_{c_1}(x1)) = 1 + x1
a_{c_1}(c_{c_1}(c_{c_1}(x))) → a_{b_1}(b_{a_1}(a_{c_1}(x)))
a_{a_1}(a_{a_1}(x)) → a_{a_1}(x)
a_{a_1}(a_{c_1}(x)) → a_{c_1}(x)
a_{a_1}(a_{b_1}(x)) → a_{b_1}(x)
b_{a_1}(a_{a_1}(x)) → b_{a_1}(x)
b_{a_1}(a_{c_1}(x)) → b_{c_1}(x)
b_{a_1}(a_{b_1}(x)) → b_{b_1}(x)
c_{a_1}(a_{a_1}(x)) → c_{a_1}(x)
c_{a_1}(a_{b_1}(x)) → c_{b_1}(x)
a_{c_1}(c_{c_1}(c_{a_1}(x))) → a_{b_1}(b_{a_1}(a_{a_1}(x)))
a_{c_1}(c_{c_1}(c_{b_1}(x))) → a_{b_1}(b_{a_1}(a_{b_1}(x)))
c_{a_1}(a_{c_1}(x)) → c_{c_1}(x)
a_{b_1}(b_{a_1}(a_{a_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x))))
a_{b_1}(b_{a_1}(a_{c_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x))))
a_{b_1}(b_{a_1}(a_{b_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x))))
b_{b_1}(b_{a_1}(a_{a_1}(x))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x))))
b_{b_1}(b_{a_1}(a_{c_1}(x))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x))))
b_{b_1}(b_{a_1}(a_{b_1}(x))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x))))
c_{b_1}(b_{a_1}(a_{a_1}(x))) → c_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x))))
c_{b_1}(b_{a_1}(a_{c_1}(x))) → c_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x))))
c_{b_1}(b_{a_1}(a_{b_1}(x))) → c_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x))))
A_{C_1}(c_{c_1}(c_{a_1}(x))) → A_{B_1}(b_{a_1}(a_{a_1}(x)))
A_{C_1}(c_{c_1}(c_{b_1}(x))) → A_{B_1}(b_{a_1}(a_{b_1}(x)))
A_{C_1}(c_{c_1}(c_{b_1}(x))) → A_{B_1}(x)
A_{B_1}(b_{a_1}(a_{a_1}(x))) → A_{C_1}(c_{b_1}(b_{a_1}(x)))
A_{B_1}(b_{a_1}(a_{a_1}(x))) → C_{B_1}(b_{a_1}(x))
A_{B_1}(b_{a_1}(a_{c_1}(x))) → A_{C_1}(c_{b_1}(b_{c_1}(x)))
A_{B_1}(b_{a_1}(a_{c_1}(x))) → C_{B_1}(b_{c_1}(x))
A_{B_1}(b_{a_1}(a_{b_1}(x))) → A_{C_1}(c_{b_1}(b_{b_1}(x)))
A_{B_1}(b_{a_1}(a_{b_1}(x))) → C_{B_1}(b_{b_1}(x))
A_{B_1}(b_{a_1}(a_{b_1}(x))) → B_{B_1}(x)
B_{B_1}(b_{a_1}(a_{a_1}(x))) → A_{C_1}(c_{b_1}(b_{a_1}(x)))
B_{B_1}(b_{a_1}(a_{a_1}(x))) → C_{B_1}(b_{a_1}(x))
B_{B_1}(b_{a_1}(a_{c_1}(x))) → A_{C_1}(c_{b_1}(b_{c_1}(x)))
B_{B_1}(b_{a_1}(a_{c_1}(x))) → C_{B_1}(b_{c_1}(x))
B_{B_1}(b_{a_1}(a_{b_1}(x))) → A_{C_1}(c_{b_1}(b_{b_1}(x)))
B_{B_1}(b_{a_1}(a_{b_1}(x))) → C_{B_1}(b_{b_1}(x))
B_{B_1}(b_{a_1}(a_{b_1}(x))) → B_{B_1}(x)
C_{B_1}(b_{a_1}(a_{a_1}(x))) → C_{A_1}(a_{c_1}(c_{b_1}(b_{a_1}(x))))
C_{B_1}(b_{a_1}(a_{a_1}(x))) → A_{C_1}(c_{b_1}(b_{a_1}(x)))
C_{B_1}(b_{a_1}(a_{a_1}(x))) → C_{B_1}(b_{a_1}(x))
C_{B_1}(b_{a_1}(a_{c_1}(x))) → C_{A_1}(a_{c_1}(c_{b_1}(b_{c_1}(x))))
C_{B_1}(b_{a_1}(a_{c_1}(x))) → A_{C_1}(c_{b_1}(b_{c_1}(x)))
C_{B_1}(b_{a_1}(a_{c_1}(x))) → C_{B_1}(b_{c_1}(x))
C_{B_1}(b_{a_1}(a_{b_1}(x))) → C_{A_1}(a_{c_1}(c_{b_1}(b_{b_1}(x))))
C_{B_1}(b_{a_1}(a_{b_1}(x))) → A_{C_1}(c_{b_1}(b_{b_1}(x)))
C_{B_1}(b_{a_1}(a_{b_1}(x))) → C_{B_1}(b_{b_1}(x))
C_{B_1}(b_{a_1}(a_{b_1}(x))) → B_{B_1}(x)
a_{c_1}(c_{c_1}(c_{a_1}(x))) → a_{b_1}(b_{a_1}(a_{a_1}(x)))
a_{c_1}(c_{c_1}(c_{b_1}(x))) → a_{b_1}(b_{a_1}(a_{b_1}(x)))
c_{a_1}(a_{c_1}(x)) → c_{c_1}(x)
a_{b_1}(b_{a_1}(a_{a_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x))))
a_{b_1}(b_{a_1}(a_{c_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x))))
a_{b_1}(b_{a_1}(a_{b_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x))))
b_{b_1}(b_{a_1}(a_{a_1}(x))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x))))
b_{b_1}(b_{a_1}(a_{c_1}(x))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x))))
b_{b_1}(b_{a_1}(a_{b_1}(x))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x))))
c_{b_1}(b_{a_1}(a_{a_1}(x))) → c_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x))))
c_{b_1}(b_{a_1}(a_{c_1}(x))) → c_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x))))
c_{b_1}(b_{a_1}(a_{b_1}(x))) → c_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x))))
A_{B_1}(b_{a_1}(a_{a_1}(x))) → A_{C_1}(c_{b_1}(b_{a_1}(x)))
A_{C_1}(c_{c_1}(c_{a_1}(x))) → A_{B_1}(b_{a_1}(a_{a_1}(x)))
A_{B_1}(b_{a_1}(a_{a_1}(x))) → C_{B_1}(b_{a_1}(x))
C_{B_1}(b_{a_1}(a_{a_1}(x))) → A_{C_1}(c_{b_1}(b_{a_1}(x)))
A_{C_1}(c_{c_1}(c_{b_1}(x))) → A_{B_1}(b_{a_1}(a_{b_1}(x)))
A_{B_1}(b_{a_1}(a_{b_1}(x))) → A_{C_1}(c_{b_1}(b_{b_1}(x)))
A_{C_1}(c_{c_1}(c_{b_1}(x))) → A_{B_1}(x)
A_{B_1}(b_{a_1}(a_{b_1}(x))) → C_{B_1}(b_{b_1}(x))
C_{B_1}(b_{a_1}(a_{a_1}(x))) → C_{B_1}(b_{a_1}(x))
C_{B_1}(b_{a_1}(a_{b_1}(x))) → A_{C_1}(c_{b_1}(b_{b_1}(x)))
C_{B_1}(b_{a_1}(a_{b_1}(x))) → C_{B_1}(b_{b_1}(x))
C_{B_1}(b_{a_1}(a_{b_1}(x))) → B_{B_1}(x)
B_{B_1}(b_{a_1}(a_{a_1}(x))) → A_{C_1}(c_{b_1}(b_{a_1}(x)))
B_{B_1}(b_{a_1}(a_{a_1}(x))) → C_{B_1}(b_{a_1}(x))
B_{B_1}(b_{a_1}(a_{b_1}(x))) → A_{C_1}(c_{b_1}(b_{b_1}(x)))
B_{B_1}(b_{a_1}(a_{b_1}(x))) → C_{B_1}(b_{b_1}(x))
B_{B_1}(b_{a_1}(a_{b_1}(x))) → B_{B_1}(x)
A_{B_1}(b_{a_1}(a_{b_1}(x))) → B_{B_1}(x)
a_{c_1}(c_{c_1}(c_{a_1}(x))) → a_{b_1}(b_{a_1}(a_{a_1}(x)))
a_{c_1}(c_{c_1}(c_{b_1}(x))) → a_{b_1}(b_{a_1}(a_{b_1}(x)))
c_{a_1}(a_{c_1}(x)) → c_{c_1}(x)
a_{b_1}(b_{a_1}(a_{a_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x))))
a_{b_1}(b_{a_1}(a_{c_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x))))
a_{b_1}(b_{a_1}(a_{b_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x))))
b_{b_1}(b_{a_1}(a_{a_1}(x))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x))))
b_{b_1}(b_{a_1}(a_{c_1}(x))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x))))
b_{b_1}(b_{a_1}(a_{b_1}(x))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x))))
c_{b_1}(b_{a_1}(a_{a_1}(x))) → c_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x))))
c_{b_1}(b_{a_1}(a_{c_1}(x))) → c_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x))))
c_{b_1}(b_{a_1}(a_{b_1}(x))) → c_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x))))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
A_{B_1}(b_{a_1}(a_{a_1}(x))) → A_{C_1}(c_{b_1}(b_{a_1}(x)))
A_{B_1}(b_{a_1}(a_{a_1}(x))) → C_{B_1}(b_{a_1}(x))
C_{B_1}(b_{a_1}(a_{a_1}(x))) → A_{C_1}(c_{b_1}(b_{a_1}(x)))
A_{B_1}(b_{a_1}(a_{b_1}(x))) → A_{C_1}(c_{b_1}(b_{b_1}(x)))
A_{C_1}(c_{c_1}(c_{b_1}(x))) → A_{B_1}(x)
A_{B_1}(b_{a_1}(a_{b_1}(x))) → C_{B_1}(b_{b_1}(x))
C_{B_1}(b_{a_1}(a_{a_1}(x))) → C_{B_1}(b_{a_1}(x))
C_{B_1}(b_{a_1}(a_{b_1}(x))) → A_{C_1}(c_{b_1}(b_{b_1}(x)))
C_{B_1}(b_{a_1}(a_{b_1}(x))) → C_{B_1}(b_{b_1}(x))
C_{B_1}(b_{a_1}(a_{b_1}(x))) → B_{B_1}(x)
B_{B_1}(b_{a_1}(a_{a_1}(x))) → A_{C_1}(c_{b_1}(b_{a_1}(x)))
B_{B_1}(b_{a_1}(a_{a_1}(x))) → C_{B_1}(b_{a_1}(x))
B_{B_1}(b_{a_1}(a_{b_1}(x))) → A_{C_1}(c_{b_1}(b_{b_1}(x)))
B_{B_1}(b_{a_1}(a_{b_1}(x))) → C_{B_1}(b_{b_1}(x))
B_{B_1}(b_{a_1}(a_{b_1}(x))) → B_{B_1}(x)
A_{B_1}(b_{a_1}(a_{b_1}(x))) → B_{B_1}(x)
POL(A_{B_1}(x1)) = x1
POL(A_{C_1}(x1)) = x1
POL(B_{B_1}(x1)) = x1
POL(C_{B_1}(x1)) = x1
POL(a_{a_1}(x1)) = 1 + x1
POL(a_{b_1}(x1)) = 1 + x1
POL(a_{c_1}(x1)) = 1 + x1
POL(b_{a_1}(x1)) = x1
POL(b_{b_1}(x1)) = x1
POL(b_{c_1}(x1)) = 0
POL(c_{a_1}(x1)) = x1
POL(c_{b_1}(x1)) = x1
POL(c_{c_1}(x1)) = 1 + x1
c_{b_1}(b_{a_1}(a_{a_1}(x))) → c_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x))))
c_{b_1}(b_{a_1}(a_{c_1}(x))) → c_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x))))
c_{b_1}(b_{a_1}(a_{b_1}(x))) → c_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x))))
a_{b_1}(b_{a_1}(a_{a_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x))))
a_{b_1}(b_{a_1}(a_{c_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x))))
a_{b_1}(b_{a_1}(a_{b_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x))))
b_{b_1}(b_{a_1}(a_{a_1}(x))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x))))
b_{b_1}(b_{a_1}(a_{c_1}(x))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x))))
b_{b_1}(b_{a_1}(a_{b_1}(x))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x))))
a_{c_1}(c_{c_1}(c_{a_1}(x))) → a_{b_1}(b_{a_1}(a_{a_1}(x)))
a_{c_1}(c_{c_1}(c_{b_1}(x))) → a_{b_1}(b_{a_1}(a_{b_1}(x)))
c_{a_1}(a_{c_1}(x)) → c_{c_1}(x)
A_{C_1}(c_{c_1}(c_{a_1}(x))) → A_{B_1}(b_{a_1}(a_{a_1}(x)))
A_{C_1}(c_{c_1}(c_{b_1}(x))) → A_{B_1}(b_{a_1}(a_{b_1}(x)))
a_{c_1}(c_{c_1}(c_{a_1}(x))) → a_{b_1}(b_{a_1}(a_{a_1}(x)))
a_{c_1}(c_{c_1}(c_{b_1}(x))) → a_{b_1}(b_{a_1}(a_{b_1}(x)))
c_{a_1}(a_{c_1}(x)) → c_{c_1}(x)
a_{b_1}(b_{a_1}(a_{a_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x))))
a_{b_1}(b_{a_1}(a_{c_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x))))
a_{b_1}(b_{a_1}(a_{b_1}(x))) → a_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x))))
b_{b_1}(b_{a_1}(a_{a_1}(x))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x))))
b_{b_1}(b_{a_1}(a_{c_1}(x))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x))))
b_{b_1}(b_{a_1}(a_{b_1}(x))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x))))
c_{b_1}(b_{a_1}(a_{a_1}(x))) → c_{a_1}(a_{c_1}(c_{b_1}(b_{a_1}(x))))
c_{b_1}(b_{a_1}(a_{c_1}(x))) → c_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(x))))
c_{b_1}(b_{a_1}(a_{b_1}(x))) → c_{a_1}(a_{c_1}(c_{b_1}(b_{b_1}(x))))