YES
0 QTRS
↳1 QTRS Reverse (⇔, 0 ms)
↳2 QTRS
↳3 FlatCCProof (⇔, 0 ms)
↳4 QTRS
↳5 RootLabelingProof (⇔, 0 ms)
↳6 QTRS
↳7 QTRSRRRProof (⇔, 46 ms)
↳8 QTRS
↳9 DependencyPairsProof (⇔, 0 ms)
↳10 QDP
↳11 DependencyGraphProof (⇔, 0 ms)
↳12 AND
↳13 QDP
↳14 UsableRulesProof (⇔, 0 ms)
↳15 QDP
↳16 QDPSizeChangeProof (⇔, 1 ms)
↳17 YES
↳18 QDP
↳19 QDPOrderProof (⇔, 25 ms)
↳20 QDP
↳21 UsableRulesProof (⇔, 0 ms)
↳22 QDP
↳23 QDPSizeChangeProof (⇔, 0 ms)
↳24 YES
a(x) → x
a(b(x)) → b(b(a(c(x))))
b(x) → x
c(b(c(x))) → a(x)
a(x) → x
b(a(x)) → c(a(b(b(x))))
b(x) → x
c(b(c(x))) → a(x)
a(a(x)) → a(x)
b(a(x)) → b(x)
c(a(x)) → c(x)
a(b(a(x))) → a(c(a(b(b(x)))))
b(b(a(x))) → b(c(a(b(b(x)))))
c(b(a(x))) → c(c(a(b(b(x)))))
a(b(x)) → a(x)
b(b(x)) → b(x)
c(b(x)) → c(x)
a(c(b(c(x)))) → a(a(x))
b(c(b(c(x)))) → b(a(x))
c(c(b(c(x)))) → c(a(x))
a_{a_1}(a_{a_1}(x)) → a_{a_1}(x)
a_{a_1}(a_{b_1}(x)) → a_{b_1}(x)
a_{a_1}(a_{c_1}(x)) → a_{c_1}(x)
b_{a_1}(a_{a_1}(x)) → b_{a_1}(x)
b_{a_1}(a_{b_1}(x)) → b_{b_1}(x)
b_{a_1}(a_{c_1}(x)) → b_{c_1}(x)
c_{a_1}(a_{a_1}(x)) → c_{a_1}(x)
c_{a_1}(a_{b_1}(x)) → c_{b_1}(x)
c_{a_1}(a_{c_1}(x)) → c_{c_1}(x)
a_{b_1}(b_{a_1}(a_{a_1}(x))) → a_{c_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{a_1}(x)))))
a_{b_1}(b_{a_1}(a_{b_1}(x))) → a_{c_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{b_1}(x)))))
a_{b_1}(b_{a_1}(a_{c_1}(x))) → a_{c_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(x)))))
b_{b_1}(b_{a_1}(a_{a_1}(x))) → b_{c_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{a_1}(x)))))
b_{b_1}(b_{a_1}(a_{b_1}(x))) → b_{c_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{b_1}(x)))))
b_{b_1}(b_{a_1}(a_{c_1}(x))) → b_{c_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(x)))))
c_{b_1}(b_{a_1}(a_{a_1}(x))) → c_{c_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{a_1}(x)))))
c_{b_1}(b_{a_1}(a_{b_1}(x))) → c_{c_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{b_1}(x)))))
c_{b_1}(b_{a_1}(a_{c_1}(x))) → c_{c_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(x)))))
a_{b_1}(b_{a_1}(x)) → a_{a_1}(x)
a_{b_1}(b_{b_1}(x)) → a_{b_1}(x)
a_{b_1}(b_{c_1}(x)) → a_{c_1}(x)
b_{b_1}(b_{a_1}(x)) → b_{a_1}(x)
b_{b_1}(b_{b_1}(x)) → b_{b_1}(x)
b_{b_1}(b_{c_1}(x)) → b_{c_1}(x)
c_{b_1}(b_{a_1}(x)) → c_{a_1}(x)
c_{b_1}(b_{b_1}(x)) → c_{b_1}(x)
c_{b_1}(b_{c_1}(x)) → c_{c_1}(x)
a_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x)))) → a_{a_1}(a_{a_1}(x))
a_{c_1}(c_{b_1}(b_{c_1}(c_{b_1}(x)))) → a_{a_1}(a_{b_1}(x))
a_{c_1}(c_{b_1}(b_{c_1}(c_{c_1}(x)))) → a_{a_1}(a_{c_1}(x))
b_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x)))) → b_{a_1}(a_{a_1}(x))
b_{c_1}(c_{b_1}(b_{c_1}(c_{b_1}(x)))) → b_{a_1}(a_{b_1}(x))
b_{c_1}(c_{b_1}(b_{c_1}(c_{c_1}(x)))) → b_{a_1}(a_{c_1}(x))
c_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x)))) → c_{a_1}(a_{a_1}(x))
c_{c_1}(c_{b_1}(b_{c_1}(c_{b_1}(x)))) → c_{a_1}(a_{b_1}(x))
c_{c_1}(c_{b_1}(b_{c_1}(c_{c_1}(x)))) → c_{a_1}(a_{c_1}(x))
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(a_{a_1}(x1)) = 2 + x1
POL(a_{b_1}(x1)) = x1
POL(a_{c_1}(x1)) = x1
POL(b_{a_1}(x1)) = 2 + x1
POL(b_{b_1}(x1)) = x1
POL(b_{c_1}(x1)) = x1
POL(c_{a_1}(x1)) = 2 + x1
POL(c_{b_1}(x1)) = 2 + x1
POL(c_{c_1}(x1)) = 1 + x1
a_{a_1}(a_{a_1}(x)) → a_{a_1}(x)
a_{a_1}(a_{b_1}(x)) → a_{b_1}(x)
a_{a_1}(a_{c_1}(x)) → a_{c_1}(x)
b_{a_1}(a_{a_1}(x)) → b_{a_1}(x)
b_{a_1}(a_{b_1}(x)) → b_{b_1}(x)
b_{a_1}(a_{c_1}(x)) → b_{c_1}(x)
c_{a_1}(a_{a_1}(x)) → c_{a_1}(x)
c_{a_1}(a_{c_1}(x)) → c_{c_1}(x)
c_{b_1}(b_{a_1}(a_{a_1}(x))) → c_{c_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{a_1}(x)))))
c_{b_1}(b_{a_1}(a_{b_1}(x))) → c_{c_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{b_1}(x)))))
c_{b_1}(b_{a_1}(a_{c_1}(x))) → c_{c_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(x)))))
c_{b_1}(b_{a_1}(x)) → c_{a_1}(x)
c_{b_1}(b_{c_1}(x)) → c_{c_1}(x)
a_{c_1}(c_{b_1}(b_{c_1}(c_{b_1}(x)))) → a_{a_1}(a_{b_1}(x))
a_{c_1}(c_{b_1}(b_{c_1}(c_{c_1}(x)))) → a_{a_1}(a_{c_1}(x))
b_{c_1}(c_{b_1}(b_{c_1}(c_{b_1}(x)))) → b_{a_1}(a_{b_1}(x))
b_{c_1}(c_{b_1}(b_{c_1}(c_{c_1}(x)))) → b_{a_1}(a_{c_1}(x))
c_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x)))) → c_{a_1}(a_{a_1}(x))
c_{c_1}(c_{b_1}(b_{c_1}(c_{b_1}(x)))) → c_{a_1}(a_{b_1}(x))
c_{c_1}(c_{b_1}(b_{c_1}(c_{c_1}(x)))) → c_{a_1}(a_{c_1}(x))
c_{a_1}(a_{b_1}(x)) → c_{b_1}(x)
a_{b_1}(b_{a_1}(a_{a_1}(x))) → a_{c_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{a_1}(x)))))
a_{b_1}(b_{a_1}(a_{b_1}(x))) → a_{c_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{b_1}(x)))))
a_{b_1}(b_{a_1}(a_{c_1}(x))) → a_{c_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(x)))))
b_{b_1}(b_{a_1}(a_{a_1}(x))) → b_{c_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{a_1}(x)))))
b_{b_1}(b_{a_1}(a_{b_1}(x))) → b_{c_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{b_1}(x)))))
b_{b_1}(b_{a_1}(a_{c_1}(x))) → b_{c_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(x)))))
a_{b_1}(b_{a_1}(x)) → a_{a_1}(x)
a_{b_1}(b_{b_1}(x)) → a_{b_1}(x)
a_{b_1}(b_{c_1}(x)) → a_{c_1}(x)
b_{b_1}(b_{a_1}(x)) → b_{a_1}(x)
b_{b_1}(b_{b_1}(x)) → b_{b_1}(x)
b_{b_1}(b_{c_1}(x)) → b_{c_1}(x)
c_{b_1}(b_{b_1}(x)) → c_{b_1}(x)
a_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x)))) → a_{a_1}(a_{a_1}(x))
b_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x)))) → b_{a_1}(a_{a_1}(x))
C_{A_1}(a_{b_1}(x)) → C_{B_1}(x)
A_{B_1}(b_{a_1}(a_{a_1}(x))) → A_{C_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{a_1}(x)))))
A_{B_1}(b_{a_1}(a_{a_1}(x))) → C_{A_1}(a_{b_1}(b_{b_1}(b_{a_1}(x))))
A_{B_1}(b_{a_1}(a_{a_1}(x))) → A_{B_1}(b_{b_1}(b_{a_1}(x)))
A_{B_1}(b_{a_1}(a_{a_1}(x))) → B_{B_1}(b_{a_1}(x))
A_{B_1}(b_{a_1}(a_{b_1}(x))) → A_{C_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{b_1}(x)))))
A_{B_1}(b_{a_1}(a_{b_1}(x))) → C_{A_1}(a_{b_1}(b_{b_1}(b_{b_1}(x))))
A_{B_1}(b_{a_1}(a_{b_1}(x))) → A_{B_1}(b_{b_1}(b_{b_1}(x)))
A_{B_1}(b_{a_1}(a_{b_1}(x))) → B_{B_1}(b_{b_1}(x))
A_{B_1}(b_{a_1}(a_{b_1}(x))) → B_{B_1}(x)
A_{B_1}(b_{a_1}(a_{c_1}(x))) → A_{C_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(x)))))
A_{B_1}(b_{a_1}(a_{c_1}(x))) → C_{A_1}(a_{b_1}(b_{b_1}(b_{c_1}(x))))
A_{B_1}(b_{a_1}(a_{c_1}(x))) → A_{B_1}(b_{b_1}(b_{c_1}(x)))
A_{B_1}(b_{a_1}(a_{c_1}(x))) → B_{B_1}(b_{c_1}(x))
A_{B_1}(b_{a_1}(a_{c_1}(x))) → B_{C_1}(x)
B_{B_1}(b_{a_1}(a_{a_1}(x))) → B_{C_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{a_1}(x)))))
B_{B_1}(b_{a_1}(a_{a_1}(x))) → C_{A_1}(a_{b_1}(b_{b_1}(b_{a_1}(x))))
B_{B_1}(b_{a_1}(a_{a_1}(x))) → A_{B_1}(b_{b_1}(b_{a_1}(x)))
B_{B_1}(b_{a_1}(a_{a_1}(x))) → B_{B_1}(b_{a_1}(x))
B_{B_1}(b_{a_1}(a_{b_1}(x))) → B_{C_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{b_1}(x)))))
B_{B_1}(b_{a_1}(a_{b_1}(x))) → C_{A_1}(a_{b_1}(b_{b_1}(b_{b_1}(x))))
B_{B_1}(b_{a_1}(a_{b_1}(x))) → A_{B_1}(b_{b_1}(b_{b_1}(x)))
B_{B_1}(b_{a_1}(a_{b_1}(x))) → B_{B_1}(b_{b_1}(x))
B_{B_1}(b_{a_1}(a_{b_1}(x))) → B_{B_1}(x)
B_{B_1}(b_{a_1}(a_{c_1}(x))) → B_{C_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(x)))))
B_{B_1}(b_{a_1}(a_{c_1}(x))) → C_{A_1}(a_{b_1}(b_{b_1}(b_{c_1}(x))))
B_{B_1}(b_{a_1}(a_{c_1}(x))) → A_{B_1}(b_{b_1}(b_{c_1}(x)))
B_{B_1}(b_{a_1}(a_{c_1}(x))) → B_{B_1}(b_{c_1}(x))
B_{B_1}(b_{a_1}(a_{c_1}(x))) → B_{C_1}(x)
A_{B_1}(b_{b_1}(x)) → A_{B_1}(x)
A_{B_1}(b_{c_1}(x)) → A_{C_1}(x)
C_{B_1}(b_{b_1}(x)) → C_{B_1}(x)
c_{a_1}(a_{b_1}(x)) → c_{b_1}(x)
a_{b_1}(b_{a_1}(a_{a_1}(x))) → a_{c_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{a_1}(x)))))
a_{b_1}(b_{a_1}(a_{b_1}(x))) → a_{c_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{b_1}(x)))))
a_{b_1}(b_{a_1}(a_{c_1}(x))) → a_{c_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(x)))))
b_{b_1}(b_{a_1}(a_{a_1}(x))) → b_{c_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{a_1}(x)))))
b_{b_1}(b_{a_1}(a_{b_1}(x))) → b_{c_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{b_1}(x)))))
b_{b_1}(b_{a_1}(a_{c_1}(x))) → b_{c_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(x)))))
a_{b_1}(b_{a_1}(x)) → a_{a_1}(x)
a_{b_1}(b_{b_1}(x)) → a_{b_1}(x)
a_{b_1}(b_{c_1}(x)) → a_{c_1}(x)
b_{b_1}(b_{a_1}(x)) → b_{a_1}(x)
b_{b_1}(b_{b_1}(x)) → b_{b_1}(x)
b_{b_1}(b_{c_1}(x)) → b_{c_1}(x)
c_{b_1}(b_{b_1}(x)) → c_{b_1}(x)
a_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x)))) → a_{a_1}(a_{a_1}(x))
b_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x)))) → b_{a_1}(a_{a_1}(x))
C_{B_1}(b_{b_1}(x)) → C_{B_1}(x)
c_{a_1}(a_{b_1}(x)) → c_{b_1}(x)
a_{b_1}(b_{a_1}(a_{a_1}(x))) → a_{c_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{a_1}(x)))))
a_{b_1}(b_{a_1}(a_{b_1}(x))) → a_{c_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{b_1}(x)))))
a_{b_1}(b_{a_1}(a_{c_1}(x))) → a_{c_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(x)))))
b_{b_1}(b_{a_1}(a_{a_1}(x))) → b_{c_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{a_1}(x)))))
b_{b_1}(b_{a_1}(a_{b_1}(x))) → b_{c_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{b_1}(x)))))
b_{b_1}(b_{a_1}(a_{c_1}(x))) → b_{c_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(x)))))
a_{b_1}(b_{a_1}(x)) → a_{a_1}(x)
a_{b_1}(b_{b_1}(x)) → a_{b_1}(x)
a_{b_1}(b_{c_1}(x)) → a_{c_1}(x)
b_{b_1}(b_{a_1}(x)) → b_{a_1}(x)
b_{b_1}(b_{b_1}(x)) → b_{b_1}(x)
b_{b_1}(b_{c_1}(x)) → b_{c_1}(x)
c_{b_1}(b_{b_1}(x)) → c_{b_1}(x)
a_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x)))) → a_{a_1}(a_{a_1}(x))
b_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x)))) → b_{a_1}(a_{a_1}(x))
C_{B_1}(b_{b_1}(x)) → C_{B_1}(x)
From the DPs we obtained the following set of size-change graphs:
A_{B_1}(b_{a_1}(a_{a_1}(x))) → B_{B_1}(b_{a_1}(x))
B_{B_1}(b_{a_1}(a_{a_1}(x))) → A_{B_1}(b_{b_1}(b_{a_1}(x)))
A_{B_1}(b_{a_1}(a_{a_1}(x))) → A_{B_1}(b_{b_1}(b_{a_1}(x)))
A_{B_1}(b_{a_1}(a_{b_1}(x))) → A_{B_1}(b_{b_1}(b_{b_1}(x)))
A_{B_1}(b_{a_1}(a_{b_1}(x))) → B_{B_1}(b_{b_1}(x))
B_{B_1}(b_{a_1}(a_{a_1}(x))) → B_{B_1}(b_{a_1}(x))
B_{B_1}(b_{a_1}(a_{b_1}(x))) → A_{B_1}(b_{b_1}(b_{b_1}(x)))
A_{B_1}(b_{a_1}(a_{b_1}(x))) → B_{B_1}(x)
B_{B_1}(b_{a_1}(a_{b_1}(x))) → B_{B_1}(b_{b_1}(x))
B_{B_1}(b_{a_1}(a_{b_1}(x))) → B_{B_1}(x)
B_{B_1}(b_{a_1}(a_{c_1}(x))) → A_{B_1}(b_{b_1}(b_{c_1}(x)))
A_{B_1}(b_{a_1}(a_{c_1}(x))) → A_{B_1}(b_{b_1}(b_{c_1}(x)))
A_{B_1}(b_{a_1}(a_{c_1}(x))) → B_{B_1}(b_{c_1}(x))
B_{B_1}(b_{a_1}(a_{c_1}(x))) → B_{B_1}(b_{c_1}(x))
A_{B_1}(b_{b_1}(x)) → A_{B_1}(x)
c_{a_1}(a_{b_1}(x)) → c_{b_1}(x)
a_{b_1}(b_{a_1}(a_{a_1}(x))) → a_{c_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{a_1}(x)))))
a_{b_1}(b_{a_1}(a_{b_1}(x))) → a_{c_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{b_1}(x)))))
a_{b_1}(b_{a_1}(a_{c_1}(x))) → a_{c_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(x)))))
b_{b_1}(b_{a_1}(a_{a_1}(x))) → b_{c_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{a_1}(x)))))
b_{b_1}(b_{a_1}(a_{b_1}(x))) → b_{c_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{b_1}(x)))))
b_{b_1}(b_{a_1}(a_{c_1}(x))) → b_{c_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(x)))))
a_{b_1}(b_{a_1}(x)) → a_{a_1}(x)
a_{b_1}(b_{b_1}(x)) → a_{b_1}(x)
a_{b_1}(b_{c_1}(x)) → a_{c_1}(x)
b_{b_1}(b_{a_1}(x)) → b_{a_1}(x)
b_{b_1}(b_{b_1}(x)) → b_{b_1}(x)
b_{b_1}(b_{c_1}(x)) → b_{c_1}(x)
c_{b_1}(b_{b_1}(x)) → c_{b_1}(x)
a_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x)))) → a_{a_1}(a_{a_1}(x))
b_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x)))) → b_{a_1}(a_{a_1}(x))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
A_{B_1}(b_{a_1}(a_{a_1}(x))) → B_{B_1}(b_{a_1}(x))
B_{B_1}(b_{a_1}(a_{a_1}(x))) → A_{B_1}(b_{b_1}(b_{a_1}(x)))
A_{B_1}(b_{a_1}(a_{a_1}(x))) → A_{B_1}(b_{b_1}(b_{a_1}(x)))
A_{B_1}(b_{a_1}(a_{b_1}(x))) → A_{B_1}(b_{b_1}(b_{b_1}(x)))
A_{B_1}(b_{a_1}(a_{b_1}(x))) → B_{B_1}(b_{b_1}(x))
B_{B_1}(b_{a_1}(a_{a_1}(x))) → B_{B_1}(b_{a_1}(x))
B_{B_1}(b_{a_1}(a_{b_1}(x))) → A_{B_1}(b_{b_1}(b_{b_1}(x)))
A_{B_1}(b_{a_1}(a_{b_1}(x))) → B_{B_1}(x)
B_{B_1}(b_{a_1}(a_{b_1}(x))) → B_{B_1}(b_{b_1}(x))
B_{B_1}(b_{a_1}(a_{b_1}(x))) → B_{B_1}(x)
B_{B_1}(b_{a_1}(a_{c_1}(x))) → A_{B_1}(b_{b_1}(b_{c_1}(x)))
A_{B_1}(b_{a_1}(a_{c_1}(x))) → A_{B_1}(b_{b_1}(b_{c_1}(x)))
A_{B_1}(b_{a_1}(a_{c_1}(x))) → B_{B_1}(b_{c_1}(x))
B_{B_1}(b_{a_1}(a_{c_1}(x))) → B_{B_1}(b_{c_1}(x))
POL(A_{B_1}(x1)) = x1
POL(B_{B_1}(x1)) = x1
POL(a_{a_1}(x1)) = 1 + x1
POL(a_{b_1}(x1)) = 1 + x1
POL(a_{c_1}(x1)) = 1 + x1
POL(b_{a_1}(x1)) = x1
POL(b_{b_1}(x1)) = x1
POL(b_{c_1}(x1)) = x1
POL(c_{a_1}(x1)) = x1
POL(c_{b_1}(x1)) = 1 + x1
b_{b_1}(b_{a_1}(a_{a_1}(x))) → b_{c_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{a_1}(x)))))
b_{b_1}(b_{a_1}(a_{b_1}(x))) → b_{c_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{b_1}(x)))))
b_{b_1}(b_{a_1}(a_{c_1}(x))) → b_{c_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(x)))))
b_{b_1}(b_{a_1}(x)) → b_{a_1}(x)
b_{b_1}(b_{b_1}(x)) → b_{b_1}(x)
b_{b_1}(b_{c_1}(x)) → b_{c_1}(x)
b_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x)))) → b_{a_1}(a_{a_1}(x))
a_{b_1}(b_{a_1}(a_{a_1}(x))) → a_{c_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{a_1}(x)))))
a_{b_1}(b_{a_1}(a_{b_1}(x))) → a_{c_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{b_1}(x)))))
a_{b_1}(b_{a_1}(a_{c_1}(x))) → a_{c_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(x)))))
a_{b_1}(b_{b_1}(x)) → a_{b_1}(x)
a_{b_1}(b_{a_1}(x)) → a_{a_1}(x)
a_{b_1}(b_{c_1}(x)) → a_{c_1}(x)
c_{a_1}(a_{b_1}(x)) → c_{b_1}(x)
a_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x)))) → a_{a_1}(a_{a_1}(x))
c_{b_1}(b_{b_1}(x)) → c_{b_1}(x)
A_{B_1}(b_{b_1}(x)) → A_{B_1}(x)
c_{a_1}(a_{b_1}(x)) → c_{b_1}(x)
a_{b_1}(b_{a_1}(a_{a_1}(x))) → a_{c_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{a_1}(x)))))
a_{b_1}(b_{a_1}(a_{b_1}(x))) → a_{c_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{b_1}(x)))))
a_{b_1}(b_{a_1}(a_{c_1}(x))) → a_{c_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(x)))))
b_{b_1}(b_{a_1}(a_{a_1}(x))) → b_{c_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{a_1}(x)))))
b_{b_1}(b_{a_1}(a_{b_1}(x))) → b_{c_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{b_1}(x)))))
b_{b_1}(b_{a_1}(a_{c_1}(x))) → b_{c_1}(c_{a_1}(a_{b_1}(b_{b_1}(b_{c_1}(x)))))
a_{b_1}(b_{a_1}(x)) → a_{a_1}(x)
a_{b_1}(b_{b_1}(x)) → a_{b_1}(x)
a_{b_1}(b_{c_1}(x)) → a_{c_1}(x)
b_{b_1}(b_{a_1}(x)) → b_{a_1}(x)
b_{b_1}(b_{b_1}(x)) → b_{b_1}(x)
b_{b_1}(b_{c_1}(x)) → b_{c_1}(x)
c_{b_1}(b_{b_1}(x)) → c_{b_1}(x)
a_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x)))) → a_{a_1}(a_{a_1}(x))
b_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x)))) → b_{a_1}(a_{a_1}(x))
A_{B_1}(b_{b_1}(x)) → A_{B_1}(x)
From the DPs we obtained the following set of size-change graphs: