NO Nontermination Proof

Nontermination Proof

by ttt2 (version ttt2 1.15)

Input

The rewrite relation of the following TRS is considered.

a(x0) x0
a(b(x0)) b(a(c(b(a(a(x0))))))
b(x0) x0
c(c(x0)) x0

Proof

1 String Reversal

Since only unary symbols occur, one can reverse all terms and obtains the TRS
a(x0) x0
b(a(x0)) a(a(b(c(a(b(x0))))))
b(x0) x0
c(c(x0)) x0

1.1 Loop

The following loop proves nontermination.

t0 = b(a(b(a(b(c(x0))))))
1.1.1.1 b(a(b(a(c(x0)))))
1.1 b(a(a(a(b(c(a(b(c(x0)))))))))
1.1.1.1.1.1 b(a(a(a(b(c(b(c(x0))))))))
ε a(a(b(c(a(b(a(a(b(c(b(c(x0))))))))))))
1.1.1.1.1.1.1.1.1.1 a(a(b(c(a(b(a(a(b(c(c(x0)))))))))))
1.1.1.1 a(a(b(c(b(a(a(b(c(c(x0))))))))))
1.1.1.1 a(a(b(c(a(a(b(c(a(b(a(b(c(c(x0))))))))))))))
1.1.1.1.1.1 a(a(b(c(a(a(c(a(b(a(b(c(c(x0)))))))))))))
1.1.1.1 a(a(b(c(a(c(a(b(a(b(c(c(x0))))))))))))
1.1.1.1 a(a(b(c(c(a(b(a(b(c(c(x0)))))))))))
1.1.1 a(a(b(a(b(a(b(c(c(x0)))))))))
= t11
where t11 = C[t0σ] and σ = {x0/c(x0)} and C = a(a())