YES Termination Proof

Termination Proof

by ttt2 (version ttt2 1.15)

Input

The rewrite relation of the following TRS is considered.

a(x0) x0
a(b(x0)) c(b(a(x0)))
b(x0) a(x0)
c(c(x0)) b(x0)

Proof

1 Dependency Pair Transformation

The following set of initial dependency pairs has been identified.
a#(b(x0)) a#(x0)
a#(b(x0)) b#(a(x0))
a#(b(x0)) c#(b(a(x0)))
b#(x0) a#(x0)
c#(c(x0)) b#(x0)

1.1 Reduction Pair Processor with Usable Rules

Using the linear polynomial interpretation over (2 x 2)-matrices with strict dimension 1 over the arctic semiring over the integers
[b#(x1)] =
0 0
-∞ -∞
· x1 +
0 -∞
-∞ -∞
[b(x1)] =
1 0
1 0
· x1 +
0 -∞
0 -∞
[a#(x1)] =
0 -∞
-∞ -∞
· x1 +
-∞ -∞
-∞ -∞
[c#(x1)] =
0 -∞
-∞ -∞
· x1 +
0 -∞
-∞ -∞
[a(x1)] =
0 -∞
1 0
· x1 +
-∞ -∞
0 -∞
[c(x1)] =
0 0
1 0
· x1 +
0 -∞
0 -∞
together with the usable rules
a(x0) x0
a(b(x0)) c(b(a(x0)))
b(x0) a(x0)
c(c(x0)) b(x0)
(w.r.t. the implicit argument filter of the reduction pair), the pairs
a#(b(x0)) b#(a(x0))
a#(b(x0)) c#(b(a(x0)))
b#(x0) a#(x0)
c#(c(x0)) b#(x0)
remain.

1.1.1 Reduction Pair Processor with Usable Rules

Using the linear polynomial interpretation over (2 x 2)-matrices with strict dimension 1 over the arctic semiring over the integers
[b#(x1)] =
1 -∞
-∞ -∞
· x1 +
-∞ -∞
-∞ -∞
[b(x1)] =
2 0
2 0
· x1 +
-∞ -∞
-∞ -∞
[a#(x1)] =
1 -∞
-∞ -∞
· x1 +
-∞ -∞
-∞ -∞
[c#(x1)] =
0 0
-∞ -∞
· x1 +
-∞ -∞
-∞ -∞
[a(x1)] =
0 -∞
2 0
· x1 +
-∞ -∞
-∞ -∞
[c(x1)] =
0 0
2 0
· x1 +
-∞ -∞
-∞ -∞
together with the usable rules
a(x0) x0
a(b(x0)) c(b(a(x0)))
b(x0) a(x0)
c(c(x0)) b(x0)
(w.r.t. the implicit argument filter of the reduction pair), the pair
b#(x0) a#(x0)
remains.

1.1.1.1 Dependency Graph Processor

The dependency pairs are split into 0 components.