YES
0 QTRS
↳1 FlatCCProof (⇔, 0 ms)
↳2 QTRS
↳3 RootLabelingProof (⇔, 0 ms)
↳4 QTRS
↳5 QTRSRRRProof (⇔, 15 ms)
↳6 QTRS
↳7 QTRSRRRProof (⇔, 2 ms)
↳8 QTRS
↳9 RisEmptyProof (⇔, 0 ms)
↳10 YES
a(a(a(x))) → a(c(a(a(x))))
c(c(c(x))) → a(x)
a(x) → x
a(a(a(x))) → a(c(a(a(x))))
a(c(c(c(x)))) → a(a(x))
c(c(c(c(x)))) → c(a(x))
a(a(x)) → a(x)
c(a(x)) → c(x)
a_{a_1}(a_{a_1}(a_{a_1}(x))) → a_{c_1}(c_{a_1}(a_{a_1}(a_{a_1}(x))))
a_{a_1}(a_{a_1}(a_{c_1}(x))) → a_{c_1}(c_{a_1}(a_{a_1}(a_{c_1}(x))))
a_{c_1}(c_{c_1}(c_{c_1}(c_{a_1}(x)))) → a_{a_1}(a_{a_1}(x))
a_{c_1}(c_{c_1}(c_{c_1}(c_{c_1}(x)))) → a_{a_1}(a_{c_1}(x))
c_{c_1}(c_{c_1}(c_{c_1}(c_{a_1}(x)))) → c_{a_1}(a_{a_1}(x))
c_{c_1}(c_{c_1}(c_{c_1}(c_{c_1}(x)))) → c_{a_1}(a_{c_1}(x))
a_{a_1}(a_{a_1}(x)) → a_{a_1}(x)
a_{a_1}(a_{c_1}(x)) → a_{c_1}(x)
c_{a_1}(a_{a_1}(x)) → c_{a_1}(x)
c_{a_1}(a_{c_1}(x)) → c_{c_1}(x)
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(a_{a_1}(x1)) = 3 + x1
POL(a_{c_1}(x1)) = 3 + x1
POL(c_{a_1}(x1)) = x1
POL(c_{c_1}(x1)) = 2 + x1
a_{c_1}(c_{c_1}(c_{c_1}(c_{a_1}(x)))) → a_{a_1}(a_{a_1}(x))
a_{c_1}(c_{c_1}(c_{c_1}(c_{c_1}(x)))) → a_{a_1}(a_{c_1}(x))
c_{c_1}(c_{c_1}(c_{c_1}(c_{a_1}(x)))) → c_{a_1}(a_{a_1}(x))
c_{c_1}(c_{c_1}(c_{c_1}(c_{c_1}(x)))) → c_{a_1}(a_{c_1}(x))
a_{a_1}(a_{a_1}(x)) → a_{a_1}(x)
a_{a_1}(a_{c_1}(x)) → a_{c_1}(x)
c_{a_1}(a_{a_1}(x)) → c_{a_1}(x)
c_{a_1}(a_{c_1}(x)) → c_{c_1}(x)
a_{a_1}(a_{a_1}(a_{a_1}(x))) → a_{c_1}(c_{a_1}(a_{a_1}(a_{a_1}(x))))
a_{a_1}(a_{a_1}(a_{c_1}(x))) → a_{c_1}(c_{a_1}(a_{a_1}(a_{c_1}(x))))
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(a_{a_1}(x1)) = 1 + x1
POL(a_{c_1}(x1)) = x1
POL(c_{a_1}(x1)) = x1
a_{a_1}(a_{a_1}(a_{a_1}(x))) → a_{c_1}(c_{a_1}(a_{a_1}(a_{a_1}(x))))
a_{a_1}(a_{a_1}(a_{c_1}(x))) → a_{c_1}(c_{a_1}(a_{a_1}(a_{c_1}(x))))