YES Termination Proof

Termination Proof

by ttt2 (version ttt2 1.15)

Input

The rewrite relation of the following TRS is considered.

c(c(c(c(x0)))) b(b(b(b(x0))))
b(b(x0)) x0
b(b(x0)) c(b(c(x0)))

Proof

1 Dependency Pair Transformation

The following set of initial dependency pairs has been identified.
c#(c(c(c(x0)))) b#(x0)
c#(c(c(c(x0)))) b#(b(x0))
c#(c(c(c(x0)))) b#(b(b(x0)))
c#(c(c(c(x0)))) b#(b(b(b(x0))))
b#(b(x0)) c#(x0)
b#(b(x0)) b#(c(x0))
b#(b(x0)) c#(b(c(x0)))

1.1 Reduction Pair Processor with Usable Rules

Using the linear polynomial interpretation over (2 x 2)-matrices with strict dimension 1 over the arctic semiring over the integers
[b(x1)] =
0 1
-1 -4
· x1 +
3 -∞
-∞ -∞
[b#(x1)] =
1 0
-∞ -∞
· x1 +
-4 -∞
-∞ -∞
[c(x1)] =
-∞ 0
-2 1
· x1 +
0 -∞
1 -∞
[c#(x1)] =
-4 1
-∞ -∞
· x1 +
1 -∞
-∞ -∞
together with the usable rules
c(c(c(c(x0)))) b(b(b(b(x0))))
b(b(x0)) x0
b(b(x0)) c(b(c(x0)))
(w.r.t. the implicit argument filter of the reduction pair), the pairs
c#(c(c(c(x0)))) b#(x0)
c#(c(c(c(x0)))) b#(b(x0))
c#(c(c(c(x0)))) b#(b(b(x0)))
c#(c(c(c(x0)))) b#(b(b(b(x0))))
remain.

1.1.1 Dependency Graph Processor

The dependency pairs are split into 0 components.