YES
by ttt2 (version ttt2 1.15)
The rewrite relation of the following TRS is considered.
3(1(x0)) | → | 4(1(x0)) |
5(9(x0)) | → | 2(6(5(x0))) |
3(5(x0)) | → | 8(9(7(x0))) |
9(x0) | → | 3(2(3(x0))) |
8(4(x0)) | → | 6(x0) |
2(6(x0)) | → | 4(3(x0)) |
3(8(x0)) | → | 3(2(7(x0))) |
9(x0) | → | 5(0(2(x0))) |
8(8(4(x0))) | → | 1(9(x0)) |
7(1(x0)) | → | 6(9(x0)) |
3(9(x0)) | → | 9(3(x0)) |
7(5(x0)) | → | 1(0(x0)) |
1(3(x0)) | → | 1(4(x0)) |
9(5(x0)) | → | 5(6(2(x0))) |
5(3(x0)) | → | 7(9(8(x0))) |
9(x0) | → | 3(2(3(x0))) |
4(8(x0)) | → | 6(x0) |
6(2(x0)) | → | 3(4(x0)) |
8(3(x0)) | → | 7(2(3(x0))) |
9(x0) | → | 2(0(5(x0))) |
4(8(8(x0))) | → | 9(1(x0)) |
1(7(x0)) | → | 9(6(x0)) |
9(3(x0)) | → | 3(9(x0)) |
5(7(x0)) | → | 0(1(x0)) |
[5(x1)] | = |
|
||||||||||||||||||
[8(x1)] | = |
|
||||||||||||||||||
[3(x1)] | = |
|
||||||||||||||||||
[9(x1)] | = |
|
||||||||||||||||||
[6(x1)] | = |
|
||||||||||||||||||
[1(x1)] | = |
|
||||||||||||||||||
[7(x1)] | = |
|
||||||||||||||||||
[0(x1)] | = |
|
||||||||||||||||||
[2(x1)] | = |
|
||||||||||||||||||
[4(x1)] | = |
|
1(3(x0)) | → | 1(4(x0)) |
5(3(x0)) | → | 7(9(8(x0))) |
9(x0) | → | 3(2(3(x0))) |
6(2(x0)) | → | 3(4(x0)) |
8(3(x0)) | → | 7(2(3(x0))) |
9(x0) | → | 2(0(5(x0))) |
1(7(x0)) | → | 9(6(x0)) |
9(3(x0)) | → | 3(9(x0)) |
5(7(x0)) | → | 0(1(x0)) |
[5(x1)] | = | 1 · x1 + -∞ |
[8(x1)] | = | 0 · x1 + -∞ |
[3(x1)] | = | 0 · x1 + -∞ |
[9(x1)] | = | 1 · x1 + -∞ |
[6(x1)] | = | 0 · x1 + -∞ |
[1(x1)] | = | 1 · x1 + -∞ |
[7(x1)] | = | 0 · x1 + -∞ |
[0(x1)] | = | 0 · x1 + -∞ |
[2(x1)] | = | 0 · x1 + -∞ |
[4(x1)] | = | 0 · x1 + -∞ |
1(3(x0)) | → | 1(4(x0)) |
5(3(x0)) | → | 7(9(8(x0))) |
6(2(x0)) | → | 3(4(x0)) |
8(3(x0)) | → | 7(2(3(x0))) |
9(x0) | → | 2(0(5(x0))) |
1(7(x0)) | → | 9(6(x0)) |
9(3(x0)) | → | 3(9(x0)) |
5(7(x0)) | → | 0(1(x0)) |
[5(x1)] | = | 0 · x1 + -∞ |
[8(x1)] | = | 1 · x1 + -∞ |
[3(x1)] | = | 2 · x1 + -∞ |
[9(x1)] | = | 0 · x1 + -∞ |
[6(x1)] | = | 2 · x1 + -∞ |
[1(x1)] | = | 1 · x1 + -∞ |
[7(x1)] | = | 1 · x1 + -∞ |
[0(x1)] | = | 0 · x1 + -∞ |
[2(x1)] | = | 0 · x1 + -∞ |
[4(x1)] | = | 0 · x1 + -∞ |
5(3(x0)) | → | 7(9(8(x0))) |
6(2(x0)) | → | 3(4(x0)) |
8(3(x0)) | → | 7(2(3(x0))) |
9(x0) | → | 2(0(5(x0))) |
1(7(x0)) | → | 9(6(x0)) |
9(3(x0)) | → | 3(9(x0)) |
5(7(x0)) | → | 0(1(x0)) |
3(5(x0)) | → | 8(9(7(x0))) |
2(6(x0)) | → | 4(3(x0)) |
3(8(x0)) | → | 3(2(7(x0))) |
9(x0) | → | 5(0(2(x0))) |
7(1(x0)) | → | 6(9(x0)) |
3(9(x0)) | → | 9(3(x0)) |
7(5(x0)) | → | 1(0(x0)) |
final states:
{15, 14, 12, 9, 7, 5, 1}
transitions:
32 | → | 14 |
15 | → | 33 |
15 | → | 3 |
3 | → | 33 |
57 | → | 42 |
5 | → | 10 |
5 | → | 18 |
20 | → | 13 |
1 | → | 29 |
1 | → | 6 |
1 | → | 65 |
1 | → | 56 |
13 | → | 41 |
36 | → | 4 |
72 | → | 53 |
6 | → | 29 |
54 | → | 42 |
52 | → | 69 |
2 | → | 17 |
2 | → | 55 |
14 | → | 29 |
14 | → | 6 |
14 | → | 65 |
14 | → | 56 |
12 | → | 33 |
12 | → | 3 |
7 | → | 29 |
7 | → | 6 |
7 | → | 65 |
7 | → | 56 |
68 | → | 57 |
19 | → | 51 |
43 | → | 34 |
43 | → | 8 |
56 | → | 65 |
51(31) | → | 32 |
51(19) | → | 20 |
51(35) | → | 36 |
50(11) | → | 9 |
00(2) | → | 16 |
00(10) | → | 11 |
02(66) | → | 67 |
20(3) | → | 8 |
20(2) | → | 10 |
82(53) | → | 54 |
01(30) | → | 31 |
01(34) | → | 35 |
01(18) | → | 19 |
41(42) | → | 43 |
72(51) | → | 52 |
30(8) | → | 7 |
30(2) | → | 6 |
21(29) | → | 30 |
21(33) | → | 34 |
21(17) | → | 18 |
10(16) | → | 15 |
70(2) | → | 3 |
22(65) | → | 66 |
23(69) | → | 70 |
40(6) | → | 5 |
91(56) | → | 57 |
31(41) | → | 42 |
31(55) | → | 56 |
f100 | → | 2 |
52(67) | → | 68 |
80(4) | → | 1 |
90(6) | → | 14 |
90(2) | → | 13 |
90(3) | → | 4 |
53(71) | → | 72 |
03(70) | → | 71 |
92(52) | → | 53 |
60(13) | → | 12 |