(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
3(1(x)) → 4(1(x))
5(9(x)) → 2(6(5(x)))
3(5(x)) → 8(9(7(x)))
9(x) → 3(2(3(x)))
8(4(x)) → 6(x)
2(6(x)) → 4(3(x))
3(8(x)) → 3(2(7(x)))
9(x) → 5(0(2(x)))
8(8(4(x))) → 1(9(x))
7(1(x)) → 6(9(x))
3(9(x)) → 9(3(x))
7(5(x)) → 1(0(x))
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
51(9(x)) → 21(6(5(x)))
51(9(x)) → 51(x)
31(5(x)) → 81(9(7(x)))
31(5(x)) → 91(7(x))
31(5(x)) → 71(x)
91(x) → 31(2(3(x)))
91(x) → 21(3(x))
91(x) → 31(x)
21(6(x)) → 31(x)
31(8(x)) → 31(2(7(x)))
31(8(x)) → 21(7(x))
31(8(x)) → 71(x)
91(x) → 51(0(2(x)))
91(x) → 21(x)
81(8(4(x))) → 91(x)
71(1(x)) → 91(x)
31(9(x)) → 91(3(x))
31(9(x)) → 31(x)
The TRS R consists of the following rules:
3(1(x)) → 4(1(x))
5(9(x)) → 2(6(5(x)))
3(5(x)) → 8(9(7(x)))
9(x) → 3(2(3(x)))
8(4(x)) → 6(x)
2(6(x)) → 4(3(x))
3(8(x)) → 3(2(7(x)))
9(x) → 5(0(2(x)))
8(8(4(x))) → 1(9(x))
7(1(x)) → 6(9(x))
3(9(x)) → 9(3(x))
7(5(x)) → 1(0(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 2 less nodes.
(4) Complex Obligation (AND)
(5) Obligation:
Q DP problem:
The TRS P consists of the following rules:
81(8(4(x))) → 91(x)
91(x) → 31(2(3(x)))
31(5(x)) → 81(9(7(x)))
31(5(x)) → 91(7(x))
91(x) → 21(3(x))
21(6(x)) → 31(x)
31(5(x)) → 71(x)
71(1(x)) → 91(x)
91(x) → 31(x)
31(8(x)) → 31(2(7(x)))
31(8(x)) → 21(7(x))
31(8(x)) → 71(x)
31(9(x)) → 91(3(x))
91(x) → 21(x)
31(9(x)) → 31(x)
The TRS R consists of the following rules:
3(1(x)) → 4(1(x))
5(9(x)) → 2(6(5(x)))
3(5(x)) → 8(9(7(x)))
9(x) → 3(2(3(x)))
8(4(x)) → 6(x)
2(6(x)) → 4(3(x))
3(8(x)) → 3(2(7(x)))
9(x) → 5(0(2(x)))
8(8(4(x))) → 1(9(x))
7(1(x)) → 6(9(x))
3(9(x)) → 9(3(x))
7(5(x)) → 1(0(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(6) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
81(8(4(x))) → 91(x)
91(x) → 31(2(3(x)))
31(5(x)) → 81(9(7(x)))
31(5(x)) → 91(7(x))
91(x) → 21(3(x))
21(6(x)) → 31(x)
31(5(x)) → 71(x)
71(1(x)) → 91(x)
91(x) → 31(x)
31(8(x)) → 31(2(7(x)))
31(8(x)) → 21(7(x))
31(8(x)) → 71(x)
31(9(x)) → 91(3(x))
91(x) → 21(x)
31(9(x)) → 31(x)
The TRS R consists of the following rules:
3(1(x)) → 4(1(x))
3(5(x)) → 8(9(7(x)))
3(8(x)) → 3(2(7(x)))
3(9(x)) → 9(3(x))
9(x) → 3(2(3(x)))
7(1(x)) → 6(9(x))
7(5(x)) → 1(0(x))
2(6(x)) → 4(3(x))
9(x) → 5(0(2(x)))
8(4(x)) → 6(x)
8(8(4(x))) → 1(9(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(8) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
81(8(4(x))) → 91(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( 81(x1) ) = max{0, 2x1 - 2} |
POL( 91(x1) ) = max{0, -2} |
POL( 2(x1) ) = max{0, -2} |
POL( 31(x1) ) = max{0, -2} |
POL( 4(x1) ) = max{0, -2} |
POL( 0(x1) ) = max{0, -2} |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
3(1(x)) → 4(1(x))
3(5(x)) → 8(9(7(x)))
3(9(x)) → 9(3(x))
9(x) → 3(2(3(x)))
3(8(x)) → 3(2(7(x)))
2(6(x)) → 4(3(x))
9(x) → 5(0(2(x)))
8(8(4(x))) → 1(9(x))
8(4(x)) → 6(x)
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
91(x) → 31(2(3(x)))
31(5(x)) → 81(9(7(x)))
31(5(x)) → 91(7(x))
91(x) → 21(3(x))
21(6(x)) → 31(x)
31(5(x)) → 71(x)
71(1(x)) → 91(x)
91(x) → 31(x)
31(8(x)) → 31(2(7(x)))
31(8(x)) → 21(7(x))
31(8(x)) → 71(x)
31(9(x)) → 91(3(x))
91(x) → 21(x)
31(9(x)) → 31(x)
The TRS R consists of the following rules:
3(1(x)) → 4(1(x))
3(5(x)) → 8(9(7(x)))
3(8(x)) → 3(2(7(x)))
3(9(x)) → 9(3(x))
9(x) → 3(2(3(x)))
7(1(x)) → 6(9(x))
7(5(x)) → 1(0(x))
2(6(x)) → 4(3(x))
9(x) → 5(0(2(x)))
8(4(x)) → 6(x)
8(8(4(x))) → 1(9(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(10) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
31(5(x)) → 91(7(x))
91(x) → 31(2(3(x)))
31(5(x)) → 71(x)
71(1(x)) → 91(x)
91(x) → 21(3(x))
21(6(x)) → 31(x)
31(8(x)) → 31(2(7(x)))
31(8(x)) → 21(7(x))
31(8(x)) → 71(x)
31(9(x)) → 91(3(x))
91(x) → 31(x)
31(9(x)) → 31(x)
91(x) → 21(x)
The TRS R consists of the following rules:
3(1(x)) → 4(1(x))
3(5(x)) → 8(9(7(x)))
3(8(x)) → 3(2(7(x)))
3(9(x)) → 9(3(x))
9(x) → 3(2(3(x)))
7(1(x)) → 6(9(x))
7(5(x)) → 1(0(x))
2(6(x)) → 4(3(x))
9(x) → 5(0(2(x)))
8(4(x)) → 6(x)
8(8(4(x))) → 1(9(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(12) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
71(1(x)) → 91(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(5(x1)) = | | + | / | 0A | 0A | 0A | \ |
| | 0A | 1A | -I | | |
\ | -I | 0A | 1A | / |
| · | x1 |
POL(7(x1)) = | | + | / | 0A | 0A | -I | \ |
| | 0A | 0A | -I | | |
\ | -I | 0A | -I | / |
| · | x1 |
POL(2(x1)) = | | + | / | 0A | 0A | -I | \ |
| | -I | -I | -I | | |
\ | 0A | 0A | 0A | / |
| · | x1 |
POL(3(x1)) = | | + | / | -I | 0A | -I | \ |
| | -I | 0A | -I | | |
\ | -I | 0A | -I | / |
| · | x1 |
POL(1(x1)) = | | + | / | 0A | 0A | 0A | \ |
| | 0A | 0A | 0A | | |
\ | 0A | 0A | 0A | / |
| · | x1 |
POL(6(x1)) = | | + | / | 0A | 0A | 0A | \ |
| | 0A | 0A | 0A | | |
\ | 0A | 0A | 0A | / |
| · | x1 |
POL(8(x1)) = | | + | / | 0A | 0A | 1A | \ |
| | -I | -I | 0A | | |
\ | -I | -I | 0A | / |
| · | x1 |
POL(9(x1)) = | | + | / | 0A | 0A | 0A | \ |
| | 0A | 0A | -I | | |
\ | -I | -I | 0A | / |
| · | x1 |
POL(0(x1)) = | | + | / | 0A | -I | -I | \ |
| | -I | -I | -I | | |
\ | -I | 0A | -I | / |
| · | x1 |
POL(4(x1)) = | | + | / | 0A | 0A | -I | \ |
| | -I | -I | -I | | |
\ | 0A | 0A | 0A | / |
| · | x1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
7(1(x)) → 6(9(x))
7(5(x)) → 1(0(x))
3(1(x)) → 4(1(x))
3(5(x)) → 8(9(7(x)))
3(9(x)) → 9(3(x))
9(x) → 3(2(3(x)))
3(8(x)) → 3(2(7(x)))
2(6(x)) → 4(3(x))
9(x) → 5(0(2(x)))
8(8(4(x))) → 1(9(x))
8(4(x)) → 6(x)
(13) Obligation:
Q DP problem:
The TRS P consists of the following rules:
31(5(x)) → 91(7(x))
91(x) → 31(2(3(x)))
31(5(x)) → 71(x)
91(x) → 21(3(x))
21(6(x)) → 31(x)
31(8(x)) → 31(2(7(x)))
31(8(x)) → 21(7(x))
31(8(x)) → 71(x)
31(9(x)) → 91(3(x))
91(x) → 31(x)
31(9(x)) → 31(x)
91(x) → 21(x)
The TRS R consists of the following rules:
3(1(x)) → 4(1(x))
3(5(x)) → 8(9(7(x)))
3(8(x)) → 3(2(7(x)))
3(9(x)) → 9(3(x))
9(x) → 3(2(3(x)))
7(1(x)) → 6(9(x))
7(5(x)) → 1(0(x))
2(6(x)) → 4(3(x))
9(x) → 5(0(2(x)))
8(4(x)) → 6(x)
8(8(4(x))) → 1(9(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(14) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.
(15) Obligation:
Q DP problem:
The TRS P consists of the following rules:
91(x) → 31(2(3(x)))
31(5(x)) → 91(7(x))
91(x) → 21(3(x))
21(6(x)) → 31(x)
31(8(x)) → 31(2(7(x)))
31(8(x)) → 21(7(x))
31(9(x)) → 91(3(x))
91(x) → 31(x)
31(9(x)) → 31(x)
91(x) → 21(x)
The TRS R consists of the following rules:
3(1(x)) → 4(1(x))
3(5(x)) → 8(9(7(x)))
3(8(x)) → 3(2(7(x)))
3(9(x)) → 9(3(x))
9(x) → 3(2(3(x)))
7(1(x)) → 6(9(x))
7(5(x)) → 1(0(x))
2(6(x)) → 4(3(x))
9(x) → 5(0(2(x)))
8(4(x)) → 6(x)
8(8(4(x))) → 1(9(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(16) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
21(6(x)) → 31(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(2(x1)) = | | + | / | -I | 0A | 1A | \ |
| | -I | 0A | 0A | | |
\ | -I | -I | 0A | / |
| · | x1 |
POL(3(x1)) = | | + | / | 0A | 0A | 1A | \ |
| | -I | 0A | 0A | | |
\ | -I | -I | 0A | / |
| · | x1 |
POL(5(x1)) = | | + | / | 0A | 0A | -I | \ |
| | -I | -I | -I | | |
\ | 1A | 0A | 1A | / |
| · | x1 |
POL(7(x1)) = | | + | / | 0A | 0A | 1A | \ |
| | 0A | 0A | -I | | |
\ | 0A | -I | -I | / |
| · | x1 |
POL(6(x1)) = | | + | / | 0A | 0A | 0A | \ |
| | -I | 0A | 0A | | |
\ | 0A | 0A | 0A | / |
| · | x1 |
POL(8(x1)) = | | + | / | 1A | 0A | 0A | \ |
| | -I | 0A | -I | | |
\ | 0A | -I | -I | / |
| · | x1 |
POL(9(x1)) = | | + | / | 0A | 0A | 1A | \ |
| | 0A | 0A | 0A | | |
\ | 0A | 0A | 1A | / |
| · | x1 |
POL(1(x1)) = | | + | / | 0A | 0A | 1A | \ |
| | -I | -I | -I | | |
\ | -I | 0A | 0A | / |
| · | x1 |
POL(4(x1)) = | | + | / | 0A | 0A | 0A | \ |
| | -I | 0A | 0A | | |
\ | -I | 0A | 0A | / |
| · | x1 |
POL(0(x1)) = | | + | / | -I | -I | 0A | \ |
| | -I | 0A | -I | | |
\ | -I | -I | -I | / |
| · | x1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
3(1(x)) → 4(1(x))
3(5(x)) → 8(9(7(x)))
3(9(x)) → 9(3(x))
9(x) → 3(2(3(x)))
3(8(x)) → 3(2(7(x)))
2(6(x)) → 4(3(x))
7(1(x)) → 6(9(x))
7(5(x)) → 1(0(x))
9(x) → 5(0(2(x)))
8(8(4(x))) → 1(9(x))
8(4(x)) → 6(x)
(17) Obligation:
Q DP problem:
The TRS P consists of the following rules:
91(x) → 31(2(3(x)))
31(5(x)) → 91(7(x))
91(x) → 21(3(x))
31(8(x)) → 31(2(7(x)))
31(8(x)) → 21(7(x))
31(9(x)) → 91(3(x))
91(x) → 31(x)
31(9(x)) → 31(x)
91(x) → 21(x)
The TRS R consists of the following rules:
3(1(x)) → 4(1(x))
3(5(x)) → 8(9(7(x)))
3(8(x)) → 3(2(7(x)))
3(9(x)) → 9(3(x))
9(x) → 3(2(3(x)))
7(1(x)) → 6(9(x))
7(5(x)) → 1(0(x))
2(6(x)) → 4(3(x))
9(x) → 5(0(2(x)))
8(4(x)) → 6(x)
8(8(4(x))) → 1(9(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(18) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes.
(19) Obligation:
Q DP problem:
The TRS P consists of the following rules:
31(5(x)) → 91(7(x))
91(x) → 31(2(3(x)))
31(8(x)) → 31(2(7(x)))
31(9(x)) → 91(3(x))
91(x) → 31(x)
31(9(x)) → 31(x)
The TRS R consists of the following rules:
3(1(x)) → 4(1(x))
3(5(x)) → 8(9(7(x)))
3(8(x)) → 3(2(7(x)))
3(9(x)) → 9(3(x))
9(x) → 3(2(3(x)))
7(1(x)) → 6(9(x))
7(5(x)) → 1(0(x))
2(6(x)) → 4(3(x))
9(x) → 5(0(2(x)))
8(4(x)) → 6(x)
8(8(4(x))) → 1(9(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(20) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
31(5(x)) → 91(7(x))
31(9(x)) → 91(3(x))
31(9(x)) → 31(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:
POL(0(x1)) = 0
POL(1(x1)) = 0
POL(2(x1)) = 0
POL(3(x1)) = x1
POL(31(x1)) = x1
POL(4(x1)) = 0
POL(5(x1)) = 1
POL(6(x1)) = 0
POL(7(x1)) = 0
POL(8(x1)) = 0
POL(9(x1)) = 1 + x1
POL(91(x1)) = x1
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
7(1(x)) → 6(9(x))
7(5(x)) → 1(0(x))
3(1(x)) → 4(1(x))
3(5(x)) → 8(9(7(x)))
3(9(x)) → 9(3(x))
9(x) → 3(2(3(x)))
3(8(x)) → 3(2(7(x)))
2(6(x)) → 4(3(x))
9(x) → 5(0(2(x)))
8(8(4(x))) → 1(9(x))
8(4(x)) → 6(x)
(21) Obligation:
Q DP problem:
The TRS P consists of the following rules:
91(x) → 31(2(3(x)))
31(8(x)) → 31(2(7(x)))
91(x) → 31(x)
The TRS R consists of the following rules:
3(1(x)) → 4(1(x))
3(5(x)) → 8(9(7(x)))
3(8(x)) → 3(2(7(x)))
3(9(x)) → 9(3(x))
9(x) → 3(2(3(x)))
7(1(x)) → 6(9(x))
7(5(x)) → 1(0(x))
2(6(x)) → 4(3(x))
9(x) → 5(0(2(x)))
8(4(x)) → 6(x)
8(8(4(x))) → 1(9(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(22) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.
(23) Obligation:
Q DP problem:
The TRS P consists of the following rules:
31(8(x)) → 31(2(7(x)))
The TRS R consists of the following rules:
3(1(x)) → 4(1(x))
3(5(x)) → 8(9(7(x)))
3(8(x)) → 3(2(7(x)))
3(9(x)) → 9(3(x))
9(x) → 3(2(3(x)))
7(1(x)) → 6(9(x))
7(5(x)) → 1(0(x))
2(6(x)) → 4(3(x))
9(x) → 5(0(2(x)))
8(4(x)) → 6(x)
8(8(4(x))) → 1(9(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(24) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
31(8(x)) → 31(2(7(x)))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( 2(x1) ) = max{0, -2} |
POL( 4(x1) ) = max{0, -2} |
POL( 9(x1) ) = max{0, 2x1 - 2} |
POL( 1(x1) ) = max{0, -2} |
POL( 5(x1) ) = max{0, x1 - 2} |
POL( 0(x1) ) = max{0, -2} |
POL( 3(x1) ) = max{0, x1 - 2} |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
2(6(x)) → 4(3(x))
(25) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
3(1(x)) → 4(1(x))
3(5(x)) → 8(9(7(x)))
3(8(x)) → 3(2(7(x)))
3(9(x)) → 9(3(x))
9(x) → 3(2(3(x)))
7(1(x)) → 6(9(x))
7(5(x)) → 1(0(x))
2(6(x)) → 4(3(x))
9(x) → 5(0(2(x)))
8(4(x)) → 6(x)
8(8(4(x))) → 1(9(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(26) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(27) YES
(28) Obligation:
Q DP problem:
The TRS P consists of the following rules:
51(9(x)) → 51(x)
The TRS R consists of the following rules:
3(1(x)) → 4(1(x))
5(9(x)) → 2(6(5(x)))
3(5(x)) → 8(9(7(x)))
9(x) → 3(2(3(x)))
8(4(x)) → 6(x)
2(6(x)) → 4(3(x))
3(8(x)) → 3(2(7(x)))
9(x) → 5(0(2(x)))
8(8(4(x))) → 1(9(x))
7(1(x)) → 6(9(x))
3(9(x)) → 9(3(x))
7(5(x)) → 1(0(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(29) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(30) Obligation:
Q DP problem:
The TRS P consists of the following rules:
51(9(x)) → 51(x)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(31) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- 51(9(x)) → 51(x)
The graph contains the following edges 1 > 1
(32) YES