(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
2(7(x)) → 1(8(x))
2(8(1(x))) → 8(x)
2(8(x)) → 4(x)
5(9(x)) → 0(x)
4(x) → 5(2(3(x)))
5(3(x)) → 6(0(x))
2(8(x)) → 7(x)
4(7(x)) → 1(3(x))
5(2(6(x))) → 6(2(4(x)))
9(7(x)) → 7(5(x))
7(2(x)) → 4(x)
7(0(x)) → 9(3(x))
6(9(x)) → 9(x)
9(5(9(x))) → 5(7(x))
4(x) → 9(6(6(x)))
9(x) → 6(7(x))
6(2(x)) → 7(7(x))
2(4(x)) → 0(7(x))
6(6(x)) → 3(x)
0(3(x)) → 5(3(x))
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
21(8(x)) → 41(x)
51(9(x)) → 01(x)
41(x) → 51(2(3(x)))
41(x) → 21(3(x))
51(3(x)) → 61(0(x))
51(3(x)) → 01(x)
21(8(x)) → 71(x)
51(2(6(x))) → 61(2(4(x)))
51(2(6(x))) → 21(4(x))
51(2(6(x))) → 41(x)
91(7(x)) → 71(5(x))
91(7(x)) → 51(x)
71(2(x)) → 41(x)
71(0(x)) → 91(3(x))
91(5(9(x))) → 51(7(x))
91(5(9(x))) → 71(x)
41(x) → 91(6(6(x)))
41(x) → 61(6(x))
41(x) → 61(x)
91(x) → 61(7(x))
91(x) → 71(x)
61(2(x)) → 71(7(x))
61(2(x)) → 71(x)
21(4(x)) → 01(7(x))
21(4(x)) → 71(x)
01(3(x)) → 51(3(x))
The TRS R consists of the following rules:
2(7(x)) → 1(8(x))
2(8(1(x))) → 8(x)
2(8(x)) → 4(x)
5(9(x)) → 0(x)
4(x) → 5(2(3(x)))
5(3(x)) → 6(0(x))
2(8(x)) → 7(x)
4(7(x)) → 1(3(x))
5(2(6(x))) → 6(2(4(x)))
9(7(x)) → 7(5(x))
7(2(x)) → 4(x)
7(0(x)) → 9(3(x))
6(9(x)) → 9(x)
9(5(9(x))) → 5(7(x))
4(x) → 9(6(6(x)))
9(x) → 6(7(x))
6(2(x)) → 7(7(x))
2(4(x)) → 0(7(x))
6(6(x)) → 3(x)
0(3(x)) → 5(3(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 8 less nodes.
(4) Complex Obligation (AND)
(5) Obligation:
Q DP problem:
The TRS P consists of the following rules:
51(3(x)) → 01(x)
01(3(x)) → 51(3(x))
The TRS R consists of the following rules:
2(7(x)) → 1(8(x))
2(8(1(x))) → 8(x)
2(8(x)) → 4(x)
5(9(x)) → 0(x)
4(x) → 5(2(3(x)))
5(3(x)) → 6(0(x))
2(8(x)) → 7(x)
4(7(x)) → 1(3(x))
5(2(6(x))) → 6(2(4(x)))
9(7(x)) → 7(5(x))
7(2(x)) → 4(x)
7(0(x)) → 9(3(x))
6(9(x)) → 9(x)
9(5(9(x))) → 5(7(x))
4(x) → 9(6(6(x)))
9(x) → 6(7(x))
6(2(x)) → 7(7(x))
2(4(x)) → 0(7(x))
6(6(x)) → 3(x)
0(3(x)) → 5(3(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(6) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
51(3(x)) → 01(x)
01(3(x)) → 51(3(x))
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(8) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- 01(3(x)) → 51(3(x))
The graph contains the following edges 1 >= 1
- 51(3(x)) → 01(x)
The graph contains the following edges 1 > 1
(9) YES
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
41(x) → 91(6(6(x)))
91(7(x)) → 71(5(x))
71(0(x)) → 91(3(x))
91(x) → 71(x)
71(2(x)) → 41(x)
41(x) → 61(x)
61(2(x)) → 71(7(x))
61(2(x)) → 71(x)
91(7(x)) → 51(x)
51(2(6(x))) → 61(2(4(x)))
51(2(6(x))) → 21(4(x))
21(8(x)) → 41(x)
21(8(x)) → 71(x)
21(4(x)) → 71(x)
51(2(6(x))) → 41(x)
91(5(9(x))) → 71(x)
The TRS R consists of the following rules:
2(7(x)) → 1(8(x))
2(8(1(x))) → 8(x)
2(8(x)) → 4(x)
5(9(x)) → 0(x)
4(x) → 5(2(3(x)))
5(3(x)) → 6(0(x))
2(8(x)) → 7(x)
4(7(x)) → 1(3(x))
5(2(6(x))) → 6(2(4(x)))
9(7(x)) → 7(5(x))
7(2(x)) → 4(x)
7(0(x)) → 9(3(x))
6(9(x)) → 9(x)
9(5(9(x))) → 5(7(x))
4(x) → 9(6(6(x)))
9(x) → 6(7(x))
6(2(x)) → 7(7(x))
2(4(x)) → 0(7(x))
6(6(x)) → 3(x)
0(3(x)) → 5(3(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(11) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
21(8(x)) → 41(x)
21(8(x)) → 71(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:
POL(0(x1)) = 0
POL(1(x1)) = 0
POL(2(x1)) = 0
POL(21(x1)) = x1
POL(3(x1)) = 0
POL(4(x1)) = 0
POL(41(x1)) = 0
POL(5(x1)) = 0
POL(51(x1)) = 0
POL(6(x1)) = 0
POL(61(x1)) = 0
POL(7(x1)) = 0
POL(71(x1)) = 0
POL(8(x1)) = 1
POL(9(x1)) = 0
POL(91(x1)) = 0
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
0(3(x)) → 5(3(x))
5(3(x)) → 6(0(x))
6(9(x)) → 9(x)
9(7(x)) → 7(5(x))
7(2(x)) → 4(x)
4(x) → 9(6(6(x)))
9(5(9(x))) → 5(7(x))
5(9(x)) → 0(x)
5(2(6(x))) → 6(2(4(x)))
6(2(x)) → 7(7(x))
7(0(x)) → 9(3(x))
9(x) → 6(7(x))
6(6(x)) → 3(x)
4(x) → 5(2(3(x)))
4(7(x)) → 1(3(x))
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
41(x) → 91(6(6(x)))
91(7(x)) → 71(5(x))
71(0(x)) → 91(3(x))
91(x) → 71(x)
71(2(x)) → 41(x)
41(x) → 61(x)
61(2(x)) → 71(7(x))
61(2(x)) → 71(x)
91(7(x)) → 51(x)
51(2(6(x))) → 61(2(4(x)))
51(2(6(x))) → 21(4(x))
21(4(x)) → 71(x)
51(2(6(x))) → 41(x)
91(5(9(x))) → 71(x)
The TRS R consists of the following rules:
2(7(x)) → 1(8(x))
2(8(1(x))) → 8(x)
2(8(x)) → 4(x)
5(9(x)) → 0(x)
4(x) → 5(2(3(x)))
5(3(x)) → 6(0(x))
2(8(x)) → 7(x)
4(7(x)) → 1(3(x))
5(2(6(x))) → 6(2(4(x)))
9(7(x)) → 7(5(x))
7(2(x)) → 4(x)
7(0(x)) → 9(3(x))
6(9(x)) → 9(x)
9(5(9(x))) → 5(7(x))
4(x) → 9(6(6(x)))
9(x) → 6(7(x))
6(2(x)) → 7(7(x))
2(4(x)) → 0(7(x))
6(6(x)) → 3(x)
0(3(x)) → 5(3(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(13) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
91(7(x)) → 51(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(6(x1)) = | | + | / | 0A | 0A | 0A | \ |
| | 0A | 0A | 0A | | |
\ | 0A | -I | 0A | / |
| · | x1 |
POL(7(x1)) = | | + | / | 0A | -I | 0A | \ |
| | 0A | 0A | 0A | | |
\ | 0A | 0A | 0A | / |
| · | x1 |
POL(5(x1)) = | | + | / | 0A | 0A | 0A | \ |
| | 0A | 0A | 0A | | |
\ | 0A | 0A | 0A | / |
| · | x1 |
POL(0(x1)) = | | + | / | 0A | 0A | 0A | \ |
| | 0A | -I | 0A | | |
\ | 0A | -I | 0A | / |
| · | x1 |
POL(3(x1)) = | | + | / | 0A | -I | -I | \ |
| | -I | -I | -I | | |
\ | 0A | 0A | 0A | / |
| · | x1 |
POL(2(x1)) = | | + | / | 0A | 0A | 0A | \ |
| | 0A | 1A | 0A | | |
\ | 0A | 0A | 0A | / |
| · | x1 |
POL(4(x1)) = | | + | / | 0A | 0A | 0A | \ |
| | 0A | 0A | 0A | | |
\ | 0A | 0A | 0A | / |
| · | x1 |
POL(9(x1)) = | | + | / | 0A | 0A | 0A | \ |
| | 0A | 0A | 0A | | |
\ | 0A | 0A | 0A | / |
| · | x1 |
POL(1(x1)) = | | + | / | -I | 0A | 0A | \ |
| | -I | -I | -I | | |
\ | 0A | -I | -I | / |
| · | x1 |
POL(8(x1)) = | | + | / | -I | -I | -I | \ |
| | -I | -I | -I | | |
\ | 0A | 0A | 0A | / |
| · | x1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
0(3(x)) → 5(3(x))
5(3(x)) → 6(0(x))
6(9(x)) → 9(x)
9(7(x)) → 7(5(x))
7(2(x)) → 4(x)
4(x) → 9(6(6(x)))
9(5(9(x))) → 5(7(x))
5(9(x)) → 0(x)
5(2(6(x))) → 6(2(4(x)))
6(2(x)) → 7(7(x))
7(0(x)) → 9(3(x))
9(x) → 6(7(x))
6(6(x)) → 3(x)
4(x) → 5(2(3(x)))
4(7(x)) → 1(3(x))
2(7(x)) → 1(8(x))
2(8(1(x))) → 8(x)
2(8(x)) → 4(x)
2(8(x)) → 7(x)
2(4(x)) → 0(7(x))
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
41(x) → 91(6(6(x)))
91(7(x)) → 71(5(x))
71(0(x)) → 91(3(x))
91(x) → 71(x)
71(2(x)) → 41(x)
41(x) → 61(x)
61(2(x)) → 71(7(x))
61(2(x)) → 71(x)
51(2(6(x))) → 61(2(4(x)))
51(2(6(x))) → 21(4(x))
21(4(x)) → 71(x)
51(2(6(x))) → 41(x)
91(5(9(x))) → 71(x)
The TRS R consists of the following rules:
2(7(x)) → 1(8(x))
2(8(1(x))) → 8(x)
2(8(x)) → 4(x)
5(9(x)) → 0(x)
4(x) → 5(2(3(x)))
5(3(x)) → 6(0(x))
2(8(x)) → 7(x)
4(7(x)) → 1(3(x))
5(2(6(x))) → 6(2(4(x)))
9(7(x)) → 7(5(x))
7(2(x)) → 4(x)
7(0(x)) → 9(3(x))
6(9(x)) → 9(x)
9(5(9(x))) → 5(7(x))
4(x) → 9(6(6(x)))
9(x) → 6(7(x))
6(2(x)) → 7(7(x))
2(4(x)) → 0(7(x))
6(6(x)) → 3(x)
0(3(x)) → 5(3(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(15) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 4 less nodes.
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
91(7(x)) → 71(5(x))
71(0(x)) → 91(3(x))
91(x) → 71(x)
71(2(x)) → 41(x)
41(x) → 91(6(6(x)))
91(5(9(x))) → 71(x)
41(x) → 61(x)
61(2(x)) → 71(7(x))
61(2(x)) → 71(x)
The TRS R consists of the following rules:
2(7(x)) → 1(8(x))
2(8(1(x))) → 8(x)
2(8(x)) → 4(x)
5(9(x)) → 0(x)
4(x) → 5(2(3(x)))
5(3(x)) → 6(0(x))
2(8(x)) → 7(x)
4(7(x)) → 1(3(x))
5(2(6(x))) → 6(2(4(x)))
9(7(x)) → 7(5(x))
7(2(x)) → 4(x)
7(0(x)) → 9(3(x))
6(9(x)) → 9(x)
9(5(9(x))) → 5(7(x))
4(x) → 9(6(6(x)))
9(x) → 6(7(x))
6(2(x)) → 7(7(x))
2(4(x)) → 0(7(x))
6(6(x)) → 3(x)
0(3(x)) → 5(3(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(17) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
61(2(x)) → 71(7(x))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(7(x1)) = | | + | / | -I | -I | 0A | \ |
| | 0A | 0A | 0A | | |
\ | -I | -I | 0A | / |
| · | x1 |
POL(5(x1)) = | | + | / | -I | -I | 0A | \ |
| | -I | -I | 0A | | |
\ | -I | -I | 0A | / |
| · | x1 |
POL(0(x1)) = | | + | / | -I | -I | -I | \ |
| | -I | -I | -I | | |
\ | -I | -I | -I | / |
| · | x1 |
POL(3(x1)) = | | + | / | -I | -I | -I | \ |
| | -I | -I | -I | | |
\ | -I | -I | -I | / |
| · | x1 |
POL(2(x1)) = | | + | / | 0A | 0A | 0A | \ |
| | 0A | 0A | 0A | | |
\ | 0A | 1A | 1A | / |
| · | x1 |
POL(6(x1)) = | | + | / | 0A | 0A | -I | \ |
| | 0A | -I | 0A | | |
\ | -I | 0A | 0A | / |
| · | x1 |
POL(9(x1)) = | | + | / | 0A | 0A | 0A | \ |
| | -I | -I | 0A | | |
\ | 0A | 0A | 0A | / |
| · | x1 |
POL(4(x1)) = | | + | / | 0A | 0A | 1A | \ |
| | 0A | 0A | 0A | | |
\ | 0A | 0A | 0A | / |
| · | x1 |
POL(8(x1)) = | | + | / | 1A | 1A | 1A | \ |
| | 0A | 0A | 0A | | |
\ | 0A | -I | 0A | / |
| · | x1 |
POL(1(x1)) = | | + | / | -I | 0A | -I | \ |
| | -I | 0A | 0A | | |
\ | 0A | -I | -I | / |
| · | x1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
0(3(x)) → 5(3(x))
5(3(x)) → 6(0(x))
6(9(x)) → 9(x)
9(7(x)) → 7(5(x))
7(2(x)) → 4(x)
4(x) → 9(6(6(x)))
9(5(9(x))) → 5(7(x))
5(9(x)) → 0(x)
5(2(6(x))) → 6(2(4(x)))
6(2(x)) → 7(7(x))
7(0(x)) → 9(3(x))
9(x) → 6(7(x))
6(6(x)) → 3(x)
2(8(x)) → 4(x)
2(8(x)) → 7(x)
2(4(x)) → 0(7(x))
4(x) → 5(2(3(x)))
4(7(x)) → 1(3(x))
2(7(x)) → 1(8(x))
2(8(1(x))) → 8(x)
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
91(7(x)) → 71(5(x))
71(0(x)) → 91(3(x))
91(x) → 71(x)
71(2(x)) → 41(x)
41(x) → 91(6(6(x)))
91(5(9(x))) → 71(x)
41(x) → 61(x)
61(2(x)) → 71(x)
The TRS R consists of the following rules:
2(7(x)) → 1(8(x))
2(8(1(x))) → 8(x)
2(8(x)) → 4(x)
5(9(x)) → 0(x)
4(x) → 5(2(3(x)))
5(3(x)) → 6(0(x))
2(8(x)) → 7(x)
4(7(x)) → 1(3(x))
5(2(6(x))) → 6(2(4(x)))
9(7(x)) → 7(5(x))
7(2(x)) → 4(x)
7(0(x)) → 9(3(x))
6(9(x)) → 9(x)
9(5(9(x))) → 5(7(x))
4(x) → 9(6(6(x)))
9(x) → 6(7(x))
6(2(x)) → 7(7(x))
2(4(x)) → 0(7(x))
6(6(x)) → 3(x)
0(3(x)) → 5(3(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(19) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
61(2(x)) → 71(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(7(x1)) = | | + | / | 0A | -I | -I | \ |
| | 0A | -I | 0A | | |
\ | 0A | 0A | -I | / |
| · | x1 |
POL(5(x1)) = | | + | / | 0A | -I | 0A | \ |
| | 0A | 0A | 0A | | |
\ | 0A | -I | 0A | / |
| · | x1 |
POL(0(x1)) = | | + | / | 0A | 0A | -I | \ |
| | 0A | 0A | -I | | |
\ | 0A | -I | -I | / |
| · | x1 |
POL(3(x1)) = | | + | / | 0A | 0A | -I | \ |
| | -I | -I | -I | | |
\ | -I | -I | -I | / |
| · | x1 |
POL(2(x1)) = | | + | / | 0A | 0A | 0A | \ |
| | 0A | 0A | 0A | | |
\ | 0A | 1A | 1A | / |
| · | x1 |
POL(6(x1)) = | | + | / | 0A | 0A | 0A | \ |
| | 0A | -I | 0A | | |
\ | 0A | 0A | 0A | / |
| · | x1 |
POL(9(x1)) = | | + | / | 0A | 0A | 0A | \ |
| | 0A | 0A | -I | | |
\ | 0A | 0A | 0A | / |
| · | x1 |
POL(4(x1)) = | | + | / | 0A | 0A | 0A | \ |
| | 0A | 0A | 0A | | |
\ | 0A | 0A | 0A | / |
| · | x1 |
POL(8(x1)) = | | + | / | 0A | 0A | 0A | \ |
| | 0A | 0A | 0A | | |
\ | 0A | 0A | 0A | / |
| · | x1 |
POL(1(x1)) = | | + | / | 0A | -I | -I | \ |
| | -I | 0A | 0A | | |
\ | 0A | 0A | 0A | / |
| · | x1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
0(3(x)) → 5(3(x))
5(3(x)) → 6(0(x))
6(9(x)) → 9(x)
9(7(x)) → 7(5(x))
7(2(x)) → 4(x)
4(x) → 9(6(6(x)))
9(5(9(x))) → 5(7(x))
5(9(x)) → 0(x)
5(2(6(x))) → 6(2(4(x)))
6(2(x)) → 7(7(x))
7(0(x)) → 9(3(x))
9(x) → 6(7(x))
6(6(x)) → 3(x)
2(8(x)) → 4(x)
2(8(x)) → 7(x)
2(4(x)) → 0(7(x))
4(x) → 5(2(3(x)))
4(7(x)) → 1(3(x))
2(7(x)) → 1(8(x))
2(8(1(x))) → 8(x)
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
91(7(x)) → 71(5(x))
71(0(x)) → 91(3(x))
91(x) → 71(x)
71(2(x)) → 41(x)
41(x) → 91(6(6(x)))
91(5(9(x))) → 71(x)
41(x) → 61(x)
The TRS R consists of the following rules:
2(7(x)) → 1(8(x))
2(8(1(x))) → 8(x)
2(8(x)) → 4(x)
5(9(x)) → 0(x)
4(x) → 5(2(3(x)))
5(3(x)) → 6(0(x))
2(8(x)) → 7(x)
4(7(x)) → 1(3(x))
5(2(6(x))) → 6(2(4(x)))
9(7(x)) → 7(5(x))
7(2(x)) → 4(x)
7(0(x)) → 9(3(x))
6(9(x)) → 9(x)
9(5(9(x))) → 5(7(x))
4(x) → 9(6(6(x)))
9(x) → 6(7(x))
6(2(x)) → 7(7(x))
2(4(x)) → 0(7(x))
6(6(x)) → 3(x)
0(3(x)) → 5(3(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(21) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(22) Obligation:
Q DP problem:
The TRS P consists of the following rules:
71(0(x)) → 91(3(x))
91(x) → 71(x)
71(2(x)) → 41(x)
41(x) → 91(6(6(x)))
91(7(x)) → 71(5(x))
91(5(9(x))) → 71(x)
The TRS R consists of the following rules:
2(7(x)) → 1(8(x))
2(8(1(x))) → 8(x)
2(8(x)) → 4(x)
5(9(x)) → 0(x)
4(x) → 5(2(3(x)))
5(3(x)) → 6(0(x))
2(8(x)) → 7(x)
4(7(x)) → 1(3(x))
5(2(6(x))) → 6(2(4(x)))
9(7(x)) → 7(5(x))
7(2(x)) → 4(x)
7(0(x)) → 9(3(x))
6(9(x)) → 9(x)
9(5(9(x))) → 5(7(x))
4(x) → 9(6(6(x)))
9(x) → 6(7(x))
6(2(x)) → 7(7(x))
2(4(x)) → 0(7(x))
6(6(x)) → 3(x)
0(3(x)) → 5(3(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(23) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
71(0(x)) → 91(3(x))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(0(x1)) = | | + | / | -I | -I | -I | \ |
| | -I | -I | -I | | |
\ | 0A | 0A | -I | / |
| · | x1 |
POL(3(x1)) = | | + | / | -I | -I | -I | \ |
| | 0A | 0A | -I | | |
\ | -I | -I | -I | / |
| · | x1 |
POL(2(x1)) = | | + | / | 0A | 0A | -I | \ |
| | 0A | 0A | -I | | |
\ | 0A | 0A | 0A | / |
| · | x1 |
POL(6(x1)) = | | + | / | 0A | 0A | -I | \ |
| | 0A | -I | -I | | |
\ | 0A | 0A | 0A | / |
| · | x1 |
POL(7(x1)) = | | + | / | -I | -I | -I | \ |
| | -I | -I | -I | | |
\ | 0A | 0A | 0A | / |
| · | x1 |
POL(5(x1)) = | | + | / | -I | -I | -I | \ |
| | -I | -I | -I | | |
\ | 0A | 0A | 0A | / |
| · | x1 |
POL(9(x1)) = | | + | / | -I | -I | -I | \ |
| | -I | -I | -I | | |
\ | 0A | 0A | 0A | / |
| · | x1 |
POL(4(x1)) = | | + | / | -I | -I | -I | \ |
| | -I | -I | -I | | |
\ | 0A | 0A | 0A | / |
| · | x1 |
POL(8(x1)) = | | + | / | 0A | 0A | 0A | \ |
| | 0A | 0A | 0A | | |
\ | 0A | 0A | 0A | / |
| · | x1 |
POL(1(x1)) = | | + | / | -I | -I | -I | \ |
| | -I | -I | -I | | |
\ | 0A | 0A | 0A | / |
| · | x1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
0(3(x)) → 5(3(x))
5(3(x)) → 6(0(x))
6(9(x)) → 9(x)
9(7(x)) → 7(5(x))
7(2(x)) → 4(x)
4(x) → 9(6(6(x)))
9(5(9(x))) → 5(7(x))
5(9(x)) → 0(x)
5(2(6(x))) → 6(2(4(x)))
6(2(x)) → 7(7(x))
7(0(x)) → 9(3(x))
9(x) → 6(7(x))
6(6(x)) → 3(x)
2(8(x)) → 4(x)
2(8(x)) → 7(x)
2(4(x)) → 0(7(x))
4(x) → 5(2(3(x)))
4(7(x)) → 1(3(x))
2(7(x)) → 1(8(x))
2(8(1(x))) → 8(x)
(24) Obligation:
Q DP problem:
The TRS P consists of the following rules:
91(x) → 71(x)
71(2(x)) → 41(x)
41(x) → 91(6(6(x)))
91(7(x)) → 71(5(x))
91(5(9(x))) → 71(x)
The TRS R consists of the following rules:
2(7(x)) → 1(8(x))
2(8(1(x))) → 8(x)
2(8(x)) → 4(x)
5(9(x)) → 0(x)
4(x) → 5(2(3(x)))
5(3(x)) → 6(0(x))
2(8(x)) → 7(x)
4(7(x)) → 1(3(x))
5(2(6(x))) → 6(2(4(x)))
9(7(x)) → 7(5(x))
7(2(x)) → 4(x)
7(0(x)) → 9(3(x))
6(9(x)) → 9(x)
9(5(9(x))) → 5(7(x))
4(x) → 9(6(6(x)))
9(x) → 6(7(x))
6(2(x)) → 7(7(x))
2(4(x)) → 0(7(x))
6(6(x)) → 3(x)
0(3(x)) → 5(3(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(25) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(26) Obligation:
Q DP problem:
The TRS P consists of the following rules:
71(2(x)) → 41(x)
41(x) → 91(6(6(x)))
91(5(9(x))) → 71(x)
91(x) → 71(x)
The TRS R consists of the following rules:
2(7(x)) → 1(8(x))
2(8(1(x))) → 8(x)
2(8(x)) → 4(x)
5(9(x)) → 0(x)
4(x) → 5(2(3(x)))
5(3(x)) → 6(0(x))
2(8(x)) → 7(x)
4(7(x)) → 1(3(x))
5(2(6(x))) → 6(2(4(x)))
9(7(x)) → 7(5(x))
7(2(x)) → 4(x)
7(0(x)) → 9(3(x))
6(9(x)) → 9(x)
9(5(9(x))) → 5(7(x))
4(x) → 9(6(6(x)))
9(x) → 6(7(x))
6(2(x)) → 7(7(x))
2(4(x)) → 0(7(x))
6(6(x)) → 3(x)
0(3(x)) → 5(3(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(27) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
91(5(9(x))) → 71(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(2(x1)) = | | + | / | 0A | 0A | 1A | \ |
| | 1A | 1A | 1A | | |
\ | 0A | 0A | 0A | / |
| · | x1 |
POL(6(x1)) = | | + | / | 0A | -I | 0A | \ |
| | 0A | 0A | -I | | |
\ | 0A | 0A | 0A | / |
| · | x1 |
POL(5(x1)) = | | + | / | 0A | -I | -I | \ |
| | 0A | -I | 0A | | |
\ | 0A | -I | 0A | / |
| · | x1 |
POL(9(x1)) = | | + | / | 0A | 0A | 0A | \ |
| | 0A | -I | 0A | | |
\ | 0A | 0A | 0A | / |
| · | x1 |
POL(0(x1)) = | | + | / | 0A | 0A | -I | \ |
| | 0A | 0A | -I | | |
\ | -I | 0A | -I | / |
| · | x1 |
POL(3(x1)) = | | + | / | 0A | 0A | -I | \ |
| | 0A | 0A | -I | | |
\ | -I | -I | -I | / |
| · | x1 |
POL(7(x1)) = | | + | / | 0A | -I | 0A | \ |
| | 0A | -I | 0A | | |
\ | 0A | 0A | 0A | / |
| · | x1 |
POL(4(x1)) = | | + | / | 0A | 0A | 0A | \ |
| | 0A | 0A | 0A | | |
\ | 0A | 0A | 0A | / |
| · | x1 |
POL(8(x1)) = | | + | / | 0A | 0A | 0A | \ |
| | 0A | 0A | 0A | | |
\ | 0A | 0A | 0A | / |
| · | x1 |
POL(1(x1)) = | | + | / | 0A | 0A | 0A | \ |
| | 0A | 0A | 0A | | |
\ | 0A | 0A | -I | / |
| · | x1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
0(3(x)) → 5(3(x))
5(3(x)) → 6(0(x))
6(9(x)) → 9(x)
9(7(x)) → 7(5(x))
7(2(x)) → 4(x)
4(x) → 9(6(6(x)))
9(5(9(x))) → 5(7(x))
5(9(x)) → 0(x)
5(2(6(x))) → 6(2(4(x)))
6(2(x)) → 7(7(x))
7(0(x)) → 9(3(x))
9(x) → 6(7(x))
6(6(x)) → 3(x)
2(8(x)) → 4(x)
2(8(x)) → 7(x)
2(4(x)) → 0(7(x))
4(x) → 5(2(3(x)))
4(7(x)) → 1(3(x))
2(7(x)) → 1(8(x))
2(8(1(x))) → 8(x)
(28) Obligation:
Q DP problem:
The TRS P consists of the following rules:
71(2(x)) → 41(x)
41(x) → 91(6(6(x)))
91(x) → 71(x)
The TRS R consists of the following rules:
2(7(x)) → 1(8(x))
2(8(1(x))) → 8(x)
2(8(x)) → 4(x)
5(9(x)) → 0(x)
4(x) → 5(2(3(x)))
5(3(x)) → 6(0(x))
2(8(x)) → 7(x)
4(7(x)) → 1(3(x))
5(2(6(x))) → 6(2(4(x)))
9(7(x)) → 7(5(x))
7(2(x)) → 4(x)
7(0(x)) → 9(3(x))
6(9(x)) → 9(x)
9(5(9(x))) → 5(7(x))
4(x) → 9(6(6(x)))
9(x) → 6(7(x))
6(2(x)) → 7(7(x))
2(4(x)) → 0(7(x))
6(6(x)) → 3(x)
0(3(x)) → 5(3(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(29) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
71(2(x)) → 41(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:
POL(0(x1)) = 0
POL(1(x1)) = x1
POL(2(x1)) = 1 + x1
POL(3(x1)) = 0
POL(4(x1)) = 0
POL(41(x1)) = 1
POL(5(x1)) = 0
POL(6(x1)) = 0
POL(7(x1)) = 0
POL(71(x1)) = 1 + x1
POL(8(x1)) = 1
POL(9(x1)) = 0
POL(91(x1)) = 1 + x1
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
0(3(x)) → 5(3(x))
5(3(x)) → 6(0(x))
6(9(x)) → 9(x)
9(7(x)) → 7(5(x))
7(2(x)) → 4(x)
4(x) → 9(6(6(x)))
9(5(9(x))) → 5(7(x))
5(9(x)) → 0(x)
5(2(6(x))) → 6(2(4(x)))
6(2(x)) → 7(7(x))
7(0(x)) → 9(3(x))
9(x) → 6(7(x))
6(6(x)) → 3(x)
4(x) → 5(2(3(x)))
4(7(x)) → 1(3(x))
(30) Obligation:
Q DP problem:
The TRS P consists of the following rules:
41(x) → 91(6(6(x)))
91(x) → 71(x)
The TRS R consists of the following rules:
2(7(x)) → 1(8(x))
2(8(1(x))) → 8(x)
2(8(x)) → 4(x)
5(9(x)) → 0(x)
4(x) → 5(2(3(x)))
5(3(x)) → 6(0(x))
2(8(x)) → 7(x)
4(7(x)) → 1(3(x))
5(2(6(x))) → 6(2(4(x)))
9(7(x)) → 7(5(x))
7(2(x)) → 4(x)
7(0(x)) → 9(3(x))
6(9(x)) → 9(x)
9(5(9(x))) → 5(7(x))
4(x) → 9(6(6(x)))
9(x) → 6(7(x))
6(2(x)) → 7(7(x))
2(4(x)) → 0(7(x))
6(6(x)) → 3(x)
0(3(x)) → 5(3(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(31) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.
(32) TRUE