YES Termination w.r.t. Q proof of /home/cern_httpd/provide/research/cycsrs/tpdb/TPDB-d9b80194f163/SRS_Standard/Trafo_06/dup15.srs

(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a(a(d(d(x)))) → d(d(b(b(x))))
a(a(x)) → b(b(b(b(b(b(x))))))
b(b(d(d(b(b(x)))))) → a(a(c(c(x))))
c(c(x)) → d(d(x))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A(a(d(d(x)))) → B(b(x))
A(a(d(d(x)))) → B(x)
A(a(x)) → B(b(b(b(b(b(x))))))
A(a(x)) → B(b(b(b(b(x)))))
A(a(x)) → B(b(b(b(x))))
A(a(x)) → B(b(b(x)))
A(a(x)) → B(b(x))
A(a(x)) → B(x)
B(b(d(d(b(b(x)))))) → A(a(c(c(x))))
B(b(d(d(b(b(x)))))) → A(c(c(x)))
B(b(d(d(b(b(x)))))) → C(c(x))
B(b(d(d(b(b(x)))))) → C(x)

The TRS R consists of the following rules:

a(a(d(d(x)))) → d(d(b(b(x))))
a(a(x)) → b(b(b(b(b(b(x))))))
b(b(d(d(b(b(x)))))) → a(a(c(c(x))))
c(c(x)) → d(d(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

B(b(d(d(b(b(x)))))) → A(a(c(c(x))))
A(a(d(d(x)))) → B(b(x))
B(b(d(d(b(b(x)))))) → A(c(c(x)))
A(a(d(d(x)))) → B(x)
A(a(x)) → B(b(b(b(b(b(x))))))
A(a(x)) → B(b(b(b(b(x)))))
A(a(x)) → B(b(b(b(x))))
A(a(x)) → B(b(b(x)))
A(a(x)) → B(b(x))
A(a(x)) → B(x)

The TRS R consists of the following rules:

a(a(d(d(x)))) → d(d(b(b(x))))
a(a(x)) → b(b(b(b(b(b(x))))))
b(b(d(d(b(b(x)))))) → a(a(c(c(x))))
c(c(x)) → d(d(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

A(a(d(d(x)))) → B(b(x))
A(a(d(d(x)))) → B(x)


Used ordering: Polynomial interpretation [POLO]:

POL(A(x1)) = 2·x1   
POL(B(x1)) = 2·x1   
POL(a(x1)) = x1   
POL(b(x1)) = x1   
POL(c(x1)) = 1 + 2·x1   
POL(d(x1)) = 1 + 2·x1   

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

B(b(d(d(b(b(x)))))) → A(a(c(c(x))))
B(b(d(d(b(b(x)))))) → A(c(c(x)))
A(a(x)) → B(b(b(b(b(b(x))))))
A(a(x)) → B(b(b(b(b(x)))))
A(a(x)) → B(b(b(b(x))))
A(a(x)) → B(b(b(x)))
A(a(x)) → B(b(x))
A(a(x)) → B(x)

The TRS R consists of the following rules:

a(a(d(d(x)))) → d(d(b(b(x))))
a(a(x)) → b(b(b(b(b(b(x))))))
b(b(d(d(b(b(x)))))) → a(a(c(c(x))))
c(c(x)) → d(d(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


B(b(d(d(b(b(x)))))) → A(c(c(x)))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(A(x1)) = x1   
POL(B(x1)) = 1   
POL(a(x1)) = 1   
POL(b(x1)) = 1   
POL(c(x1)) = 0   
POL(d(x1)) = 0   

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

c(c(x)) → d(d(x))
a(a(d(d(x)))) → d(d(b(b(x))))
a(a(x)) → b(b(b(b(b(b(x))))))
b(b(d(d(b(b(x)))))) → a(a(c(c(x))))

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

B(b(d(d(b(b(x)))))) → A(a(c(c(x))))
A(a(x)) → B(b(b(b(b(b(x))))))
A(a(x)) → B(b(b(b(b(x)))))
A(a(x)) → B(b(b(b(x))))
A(a(x)) → B(b(b(x)))
A(a(x)) → B(b(x))
A(a(x)) → B(x)

The TRS R consists of the following rules:

a(a(d(d(x)))) → d(d(b(b(x))))
a(a(x)) → b(b(b(b(b(b(x))))))
b(b(d(d(b(b(x)))))) → a(a(c(c(x))))
c(c(x)) → d(d(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(9) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


A(a(x)) → B(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( A(x1) ) = max{0, 2x1 - 1}

POL( a(x1) ) = x1 + 1

POL( B(x1) ) = max{0, x1 - 1}

POL( c(x1) ) = 0

POL( d(x1) ) = max{0, -2}

POL( b(x1) ) = 2


The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

c(c(x)) → d(d(x))
a(a(d(d(x)))) → d(d(b(b(x))))
a(a(x)) → b(b(b(b(b(b(x))))))
b(b(d(d(b(b(x)))))) → a(a(c(c(x))))

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

B(b(d(d(b(b(x)))))) → A(a(c(c(x))))
A(a(x)) → B(b(b(b(b(b(x))))))
A(a(x)) → B(b(b(b(b(x)))))
A(a(x)) → B(b(b(b(x))))
A(a(x)) → B(b(b(x)))
A(a(x)) → B(b(x))

The TRS R consists of the following rules:

a(a(d(d(x)))) → d(d(b(b(x))))
a(a(x)) → b(b(b(b(b(b(x))))))
b(b(d(d(b(b(x)))))) → a(a(c(c(x))))
c(c(x)) → d(d(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


B(b(d(d(b(b(x)))))) → A(a(c(c(x))))
A(a(x)) → B(b(b(b(b(x)))))
A(a(x)) → B(b(b(b(x))))
A(a(x)) → B(b(b(x)))
A(a(x)) → B(b(x))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(A(x1)) = 2·x1   
POL(B(x1)) = 2·x1   
POL(a(x1)) = 5 + x1   
POL(b(x1)) = 1 + x1   
POL(c(x1)) = 2·x1   
POL(d(x1)) = 2·x1   

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

c(c(x)) → d(d(x))
a(a(d(d(x)))) → d(d(b(b(x))))
a(a(x)) → b(b(b(b(b(b(x))))))
b(b(d(d(b(b(x)))))) → a(a(c(c(x))))

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A(a(x)) → B(b(b(b(b(b(x))))))

The TRS R consists of the following rules:

a(a(d(d(x)))) → d(d(b(b(x))))
a(a(x)) → b(b(b(b(b(b(x))))))
b(b(d(d(b(b(x)))))) → a(a(c(c(x))))
c(c(x)) → d(d(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(14) TRUE