YES
Termination Proof
Termination Proof
by ttt2 (version ttt2 1.15)
Input
The rewrite relation of the following TRS is considered.
b(b(d(d(b(b(x0)))))) |
→ |
c(c(d(d(b(b(x0)))))) |
b(b(a(a(c(c(x0)))))) |
→ |
b(b(c(c(x0)))) |
a(a(d(d(x0)))) |
→ |
d(d(c(c(x0)))) |
b(b(b(b(b(b(x0)))))) |
→ |
a(a(b(b(c(c(x0)))))) |
d(d(c(c(x0)))) |
→ |
b(b(d(d(x0)))) |
d(d(c(c(x0)))) |
→ |
d(d(b(b(d(d(x0)))))) |
d(d(a(a(c(c(x0)))))) |
→ |
b(b(b(b(x0)))) |
Proof
1 Rule Removal
Using the
linear polynomial interpretation over the arctic semiring over the integers
[d(x1)] |
= |
0 ·
x1 +
-∞
|
[a(x1)] |
= |
1 ·
x1 +
-∞
|
[b(x1)] |
= |
1 ·
x1 +
-∞
|
[c(x1)] |
= |
1 ·
x1 +
-∞
|
the
rules
b(b(d(d(b(b(x0)))))) |
→ |
c(c(d(d(b(b(x0)))))) |
a(a(d(d(x0)))) |
→ |
d(d(c(c(x0)))) |
b(b(b(b(b(b(x0)))))) |
→ |
a(a(b(b(c(c(x0)))))) |
d(d(c(c(x0)))) |
→ |
b(b(d(d(x0)))) |
d(d(c(c(x0)))) |
→ |
d(d(b(b(d(d(x0)))))) |
d(d(a(a(c(c(x0)))))) |
→ |
b(b(b(b(x0)))) |
remain.
1.1 Rule Removal
Using the
linear polynomial interpretation over (2 x 2)-matrices with strict dimension 1
over the arctic semiring over the integers
[d(x1)] |
= |
·
x1 +
|
[a(x1)] |
= |
·
x1 +
|
[b(x1)] |
= |
·
x1 +
|
[c(x1)] |
= |
·
x1 +
|
the
rules
b(b(d(d(b(b(x0)))))) |
→ |
c(c(d(d(b(b(x0)))))) |
b(b(b(b(b(b(x0)))))) |
→ |
a(a(b(b(c(c(x0)))))) |
d(d(c(c(x0)))) |
→ |
b(b(d(d(x0)))) |
d(d(c(c(x0)))) |
→ |
d(d(b(b(d(d(x0)))))) |
d(d(a(a(c(c(x0)))))) |
→ |
b(b(b(b(x0)))) |
remain.
1.1.1 String Reversal
Since only unary symbols occur, one can reverse all terms and obtains the TRS
b(b(d(d(b(b(x0)))))) |
→ |
b(b(d(d(c(c(x0)))))) |
b(b(b(b(b(b(x0)))))) |
→ |
c(c(b(b(a(a(x0)))))) |
c(c(d(d(x0)))) |
→ |
d(d(b(b(x0)))) |
c(c(d(d(x0)))) |
→ |
d(d(b(b(d(d(x0)))))) |
c(c(a(a(d(d(x0)))))) |
→ |
b(b(b(b(x0)))) |
1.1.1.1 Bounds
The given TRS is
match-bounded by 1.
This is shown by the following automaton.
-
final states:
{24, 18, 14, 8, 1}
-
transitions:
32 |
→ |
15 |
32 |
→ |
22 |
32 |
→ |
16 |
32 |
→ |
1 |
18 |
→ |
4 |
18 |
→ |
3 |
1 |
→ |
22 |
1 |
→ |
16 |
1 |
→ |
15 |
8 |
→ |
24 |
8 |
→ |
25 |
8 |
→ |
16 |
8 |
→ |
15 |
16 |
→ |
26 |
14 |
→ |
4 |
14 |
→ |
3 |
24 |
→ |
4 |
24 |
→ |
3 |
b1(31) |
→ |
32 |
b1(30) |
→ |
31 |
d1(28) |
→ |
29 |
d1(29) |
→ |
30 |
a0(9) |
→ |
10 |
a0(2) |
→ |
9 |
f40
|
→ |
2 |
c1(26) |
→ |
27 |
c1(27) |
→ |
28 |
d0(19) |
→ |
20 |
d0(22) |
→ |
23 |
d0(5) |
→ |
6 |
d0(23) |
→ |
18 |
d0(16) |
→ |
17 |
d0(2) |
→ |
19 |
d0(4) |
→ |
5 |
d0(17) |
→ |
14 |
c0(2) |
→ |
3 |
c0(3) |
→ |
4 |
c0(12) |
→ |
13 |
c0(13) |
→ |
8 |
b0(10) |
→ |
11 |
b0(15) |
→ |
16 |
b0(6) |
→ |
7 |
b0(20) |
→ |
21 |
b0(2) |
→ |
15 |
b0(21) |
→ |
22 |
b0(11) |
→ |
12 |
b0(25) |
→ |
24 |
b0(16) |
→ |
25 |
b0(7) |
→ |
1 |