NO Termination w.r.t. Q proof of /home/cern_httpd/provide/research/cycsrs/tpdb/TPDB-d9b80194f163/SRS_Standard/Trafo_06/dup09.srs-torpacyc2out-split.srs

(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

Begin(0(*(*(x)))) → Wait(Right1(x))
Begin(*(*(x))) → Wait(Right2(x))
Begin(*(x)) → Wait(Right3(x))
Begin(1(*(*(x)))) → Wait(Right4(x))
Begin(*(*(x))) → Wait(Right5(x))
Begin(*(x)) → Wait(Right6(x))
Begin(#(0(0(x)))) → Wait(Right7(x))
Begin(0(0(x))) → Wait(Right8(x))
Begin(0(x)) → Wait(Right9(x))
Begin(#(1(1(x)))) → Wait(Right10(x))
Begin(1(1(x))) → Wait(Right11(x))
Begin(1(x)) → Wait(Right12(x))
Begin(#($($(x)))) → Wait(Right13(x))
Begin($($(x))) → Wait(Right14(x))
Begin($(x)) → Wait(Right15(x))
Right1(0(End(x))) → Left(*(*(1(1(End(x))))))
Right2(0(0(End(x)))) → Left(*(*(1(1(End(x))))))
Right3(0(0(*(End(x))))) → Left(*(*(1(1(End(x))))))
Right4(1(End(x))) → Left(0(0(#(#(End(x))))))
Right5(1(1(End(x)))) → Left(0(0(#(#(End(x))))))
Right6(1(1(*(End(x))))) → Left(0(0(#(#(End(x))))))
Right7(#(End(x))) → Left(0(0(#(#(End(x))))))
Right8(#(#(End(x)))) → Left(0(0(#(#(End(x))))))
Right9(#(#(0(End(x))))) → Left(0(0(#(#(End(x))))))
Right10(#(End(x))) → Left(1(1(#(#(End(x))))))
Right11(#(#(End(x)))) → Left(1(1(#(#(End(x))))))
Right12(#(#(1(End(x))))) → Left(1(1(#(#(End(x))))))
Right13(#(End(x))) → Left(*(*($($(End(x))))))
Right14(#(#(End(x)))) → Left(*(*($($(End(x))))))
Right15(#(#($(End(x))))) → Left(*(*($($(End(x))))))
Right1(0(x)) → A0(Right1(x))
Right2(0(x)) → A0(Right2(x))
Right3(0(x)) → A0(Right3(x))
Right4(0(x)) → A0(Right4(x))
Right5(0(x)) → A0(Right5(x))
Right6(0(x)) → A0(Right6(x))
Right7(0(x)) → A0(Right7(x))
Right8(0(x)) → A0(Right8(x))
Right9(0(x)) → A0(Right9(x))
Right10(0(x)) → A0(Right10(x))
Right11(0(x)) → A0(Right11(x))
Right12(0(x)) → A0(Right12(x))
Right13(0(x)) → A0(Right13(x))
Right14(0(x)) → A0(Right14(x))
Right15(0(x)) → A0(Right15(x))
Right1(*(x)) → A*(Right1(x))
Right2(*(x)) → A*(Right2(x))
Right3(*(x)) → A*(Right3(x))
Right4(*(x)) → A*(Right4(x))
Right5(*(x)) → A*(Right5(x))
Right6(*(x)) → A*(Right6(x))
Right7(*(x)) → A*(Right7(x))
Right8(*(x)) → A*(Right8(x))
Right9(*(x)) → A*(Right9(x))
Right10(*(x)) → A*(Right10(x))
Right11(*(x)) → A*(Right11(x))
Right12(*(x)) → A*(Right12(x))
Right13(*(x)) → A*(Right13(x))
Right14(*(x)) → A*(Right14(x))
Right15(*(x)) → A*(Right15(x))
Right1(1(x)) → A1(Right1(x))
Right2(1(x)) → A1(Right2(x))
Right3(1(x)) → A1(Right3(x))
Right4(1(x)) → A1(Right4(x))
Right5(1(x)) → A1(Right5(x))
Right6(1(x)) → A1(Right6(x))
Right7(1(x)) → A1(Right7(x))
Right8(1(x)) → A1(Right8(x))
Right9(1(x)) → A1(Right9(x))
Right10(1(x)) → A1(Right10(x))
Right11(1(x)) → A1(Right11(x))
Right12(1(x)) → A1(Right12(x))
Right13(1(x)) → A1(Right13(x))
Right14(1(x)) → A1(Right14(x))
Right15(1(x)) → A1(Right15(x))
Right1(#(x)) → A#(Right1(x))
Right2(#(x)) → A#(Right2(x))
Right3(#(x)) → A#(Right3(x))
Right4(#(x)) → A#(Right4(x))
Right5(#(x)) → A#(Right5(x))
Right6(#(x)) → A#(Right6(x))
Right7(#(x)) → A#(Right7(x))
Right8(#(x)) → A#(Right8(x))
Right9(#(x)) → A#(Right9(x))
Right10(#(x)) → A#(Right10(x))
Right11(#(x)) → A#(Right11(x))
Right12(#(x)) → A#(Right12(x))
Right13(#(x)) → A#(Right13(x))
Right14(#(x)) → A#(Right14(x))
Right15(#(x)) → A#(Right15(x))
Right1($(x)) → A$(Right1(x))
Right2($(x)) → A$(Right2(x))
Right3($(x)) → A$(Right3(x))
Right4($(x)) → A$(Right4(x))
Right5($(x)) → A$(Right5(x))
Right6($(x)) → A$(Right6(x))
Right7($(x)) → A$(Right7(x))
Right8($(x)) → A$(Right8(x))
Right9($(x)) → A$(Right9(x))
Right10($(x)) → A$(Right10(x))
Right11($(x)) → A$(Right11(x))
Right12($(x)) → A$(Right12(x))
Right13($(x)) → A$(Right13(x))
Right14($(x)) → A$(Right14(x))
Right15($(x)) → A$(Right15(x))
A0(Left(x)) → Left(0(x))
A*(Left(x)) → Left(*(x))
A1(Left(x)) → Left(1(x))
A#(Left(x)) → Left(#(x))
A$(Left(x)) → Left($(x))
Wait(Left(x)) → Begin(x)
0(0(*(*(x)))) → *(*(1(1(x))))
1(1(*(*(x)))) → 0(0(#(#(x))))
#(#(0(0(x)))) → 0(0(#(#(x))))
#(#(1(1(x)))) → 1(1(#(#(x))))
#(#($($(x)))) → *(*($($(x))))

Q is empty.

(1) NonTerminationProof (COMPLETE transformation)

We used the non-termination processor [OPPELT08] to show that the SRS problem is infinite.

Found the self-embedding DerivationStructure:
Wait Left 1 1 # # EndWait Left 1 1 # # End

Wait Left 1 1 # # EndWait Left 1 1 # # End
by OverlapClosure OC 2
Wait Left 1 1Wait Right11
by OverlapClosure OC 2
Wait LeftBegin
by original rule (OC 1)
Begin 1 1Wait Right11
by original rule (OC 1)
Right11 # # EndLeft 1 1 # # End
by original rule (OC 1)

(2) NO