YES
Termination Proof
Termination Proof
by ttt2 (version ttt2 1.15)
Input
The rewrite relation of the following TRS is considered.
a(a(a(a(b(b(x0)))))) |
→ |
b(b(a(a(b(b(x0)))))) |
b(b(a(a(x0)))) |
→ |
a(a(b(b(b(b(x0)))))) |
b(b(c(c(a(a(x0)))))) |
→ |
c(c(c(c(a(a(a(a(b(b(x0)))))))))) |
Proof
1 Dependency Pair Transformation
The following set of initial dependency pairs has been identified.
a#(a(a(a(b(b(x0)))))) |
→ |
b#(a(a(b(b(x0))))) |
a#(a(a(a(b(b(x0)))))) |
→ |
b#(b(a(a(b(b(x0)))))) |
b#(b(a(a(x0)))) |
→ |
b#(x0) |
b#(b(a(a(x0)))) |
→ |
b#(b(x0)) |
b#(b(a(a(x0)))) |
→ |
b#(b(b(x0))) |
b#(b(a(a(x0)))) |
→ |
b#(b(b(b(x0)))) |
b#(b(a(a(x0)))) |
→ |
a#(b(b(b(b(x0))))) |
b#(b(a(a(x0)))) |
→ |
a#(a(b(b(b(b(x0)))))) |
b#(b(c(c(a(a(x0)))))) |
→ |
b#(x0) |
b#(b(c(c(a(a(x0)))))) |
→ |
b#(b(x0)) |
b#(b(c(c(a(a(x0)))))) |
→ |
a#(b(b(x0))) |
b#(b(c(c(a(a(x0)))))) |
→ |
a#(a(b(b(x0)))) |
b#(b(c(c(a(a(x0)))))) |
→ |
a#(a(a(b(b(x0))))) |
b#(b(c(c(a(a(x0)))))) |
→ |
a#(a(a(a(b(b(x0)))))) |
1.1 Reduction Pair Processor
Using the linear polynomial interpretation over (4 x 4)-matrices with strict dimension 1
over the naturals
[b#(x1)] |
= |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
·
x1 +
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
|
[a(x1)] |
= |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
·
x1 +
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
|
[a#(x1)] |
= |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
·
x1 +
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
|
[b(x1)] |
= |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
·
x1 +
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
|
[c(x1)] |
= |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
1 |
·
x1 +
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
|
the
pairs
a#(a(a(a(b(b(x0)))))) |
→ |
b#(a(a(b(b(x0))))) |
a#(a(a(a(b(b(x0)))))) |
→ |
b#(b(a(a(b(b(x0)))))) |
b#(b(a(a(x0)))) |
→ |
b#(x0) |
b#(b(a(a(x0)))) |
→ |
b#(b(x0)) |
b#(b(a(a(x0)))) |
→ |
b#(b(b(x0))) |
b#(b(a(a(x0)))) |
→ |
b#(b(b(b(x0)))) |
b#(b(a(a(x0)))) |
→ |
a#(b(b(b(b(x0))))) |
b#(b(a(a(x0)))) |
→ |
a#(a(b(b(b(b(x0)))))) |
remain.
1.1.1 Reduction Pair Processor with Usable Rules
Using the linear polynomial interpretation over the arctic semiring over the integers
[b#(x1)] |
= |
12 ·
x1 + 0 |
[a(x1)] |
= |
4 ·
x1 + 0 |
[a#(x1)] |
= |
8 ·
x1 +
-∞
|
[b(x1)] |
= |
0 ·
x1 +
-∞
|
[c(x1)] |
= |
-∞
·
x1 + 0 |
together with the usable
rules
a(a(a(a(b(b(x0)))))) |
→ |
b(b(a(a(b(b(x0)))))) |
b(b(a(a(x0)))) |
→ |
a(a(b(b(b(b(x0)))))) |
b(b(c(c(a(a(x0)))))) |
→ |
c(c(c(c(a(a(a(a(b(b(x0)))))))))) |
(w.r.t. the implicit argument filter of the reduction pair),
the
pairs
a#(a(a(a(b(b(x0)))))) |
→ |
b#(a(a(b(b(x0))))) |
a#(a(a(a(b(b(x0)))))) |
→ |
b#(b(a(a(b(b(x0)))))) |
remain.
1.1.1.1 Dependency Graph Processor
The dependency pairs are split into 0
components.