YES
Termination Proof
Termination Proof
by ttt2 (version ttt2 1.15)
Input
The rewrite relation of the following TRS is considered.
a(a(b(b(x0)))) |
→ |
b(b(c(c(a(a(x0)))))) |
b(b(c(c(x0)))) |
→ |
c(c(b(b(b(b(x0)))))) |
b(b(a(a(x0)))) |
→ |
a(a(c(c(b(b(x0)))))) |
Proof
1 Rule Removal
Using the
linear polynomial interpretation over (3 x 3)-matrices with strict dimension 1
over the naturals
[a(x1)] |
= |
·
x1 +
|
[b(x1)] |
= |
·
x1 +
|
[c(x1)] |
= |
·
x1 +
|
the
rules
b(b(c(c(x0)))) |
→ |
c(c(b(b(b(b(x0)))))) |
b(b(a(a(x0)))) |
→ |
a(a(c(c(b(b(x0)))))) |
remain.
1.1 Dependency Pair Transformation
The following set of initial dependency pairs has been identified.
b#(b(c(c(x0)))) |
→ |
b#(x0) |
b#(b(c(c(x0)))) |
→ |
b#(b(x0)) |
b#(b(c(c(x0)))) |
→ |
b#(b(b(x0))) |
b#(b(c(c(x0)))) |
→ |
b#(b(b(b(x0)))) |
b#(b(a(a(x0)))) |
→ |
b#(x0) |
b#(b(a(a(x0)))) |
→ |
b#(b(x0)) |
1.1.1 Reduction Pair Processor with Usable Rules
Using the linear polynomial interpretation over the arctic semiring over the integers
[a(x1)] |
= |
2 ·
x1 +
-∞
|
[b#(x1)] |
= |
0 ·
x1 +
-∞
|
[b(x1)] |
= |
0 ·
x1 +
-∞
|
[c(x1)] |
= |
0 ·
x1 +
-∞
|
together with the usable
rules
b(b(c(c(x0)))) |
→ |
c(c(b(b(b(b(x0)))))) |
b(b(a(a(x0)))) |
→ |
a(a(c(c(b(b(x0)))))) |
(w.r.t. the implicit argument filter of the reduction pair),
the
pairs
b#(b(c(c(x0)))) |
→ |
b#(x0) |
b#(b(c(c(x0)))) |
→ |
b#(b(x0)) |
b#(b(c(c(x0)))) |
→ |
b#(b(b(x0))) |
b#(b(c(c(x0)))) |
→ |
b#(b(b(b(x0)))) |
remain.
1.1.1.1 Reduction Pair Processor with Usable Rules
Using the linear polynomial interpretation over the arctic semiring over the integers
[a(x1)] |
= |
-∞
·
x1 + 10 |
[b#(x1)] |
= |
0 ·
x1 + 0 |
[b(x1)] |
= |
0 ·
x1 + 4 |
[c(x1)] |
= |
1 ·
x1 + 7 |
together with the usable
rules
b(b(c(c(x0)))) |
→ |
c(c(b(b(b(b(x0)))))) |
b(b(a(a(x0)))) |
→ |
a(a(c(c(b(b(x0)))))) |
(w.r.t. the implicit argument filter of the reduction pair),
all pairs could be removed.
1.1.1.1.1 P is empty
There are no pairs anymore.