YES
by ttt2 (version ttt2 1.15)
The rewrite relation of the following TRS is considered.
a12(a12(a12(a12(x0)))) | → | x0 |
a13(a13(a13(a13(x0)))) | → | x0 |
a14(a14(a14(a14(x0)))) | → | x0 |
a15(a15(a15(a15(x0)))) | → | x0 |
a16(a16(a16(a16(x0)))) | → | x0 |
a23(a23(a23(a23(x0)))) | → | x0 |
a24(a24(a24(a24(x0)))) | → | x0 |
a25(a25(a25(a25(x0)))) | → | x0 |
a26(a26(a26(a26(x0)))) | → | x0 |
a34(a34(a34(a34(x0)))) | → | x0 |
a35(a35(a35(a35(x0)))) | → | x0 |
a36(a36(a36(a36(x0)))) | → | x0 |
a45(a45(a45(a45(x0)))) | → | x0 |
a46(a46(a46(a46(x0)))) | → | x0 |
a56(a56(a56(a56(x0)))) | → | x0 |
a13(a13(x0)) | → | a12(a12(a23(a23(a12(a12(x0)))))) |
a14(a14(x0)) | → | a12(a12(a23(a23(a34(a34(a23(a23(a12(a12(x0)))))))))) |
a15(a15(x0)) | → | a12(a12(a23(a23(a34(a34(a45(a45(a34(a34(a23(a23(a12(a12(x0)))))))))))))) |
a16(a16(x0)) | → | a12(a12(a23(a23(a34(a34(a45(a45(a56(a56(a45(a45(a34(a34(a23(a23(a12(a12(x0)))))))))))))))))) |
a24(a24(x0)) | → | a23(a23(a34(a34(a23(a23(x0)))))) |
a25(a25(x0)) | → | a23(a23(a34(a34(a45(a45(a34(a34(a23(a23(x0)))))))))) |
a26(a26(x0)) | → | a23(a23(a34(a34(a45(a45(a56(a56(a45(a45(a34(a34(a23(a23(x0)))))))))))))) |
a35(a35(x0)) | → | a34(a34(a45(a45(a34(a34(x0)))))) |
a36(a36(x0)) | → | a34(a34(a45(a45(a56(a56(a45(a45(a34(a34(x0)))))))))) |
a46(a46(x0)) | → | a45(a45(a56(a56(a45(a45(x0)))))) |
a12(a12(a23(a23(a12(a12(a23(a23(a12(a12(a23(a23(x0)))))))))))) | → | x0 |
a23(a23(a34(a34(a23(a23(a34(a34(a23(a23(a34(a34(x0)))))))))))) | → | x0 |
a34(a34(a45(a45(a34(a34(a45(a45(a34(a34(a45(a45(x0)))))))))))) | → | x0 |
a45(a45(a56(a56(a45(a45(a56(a56(a45(a45(a56(a56(x0)))))))))))) | → | x0 |
a12(a12(a34(a34(x0)))) | → | a34(a34(a12(a12(x0)))) |
a12(a12(a45(a45(x0)))) | → | a45(a45(a12(a12(x0)))) |
a12(a12(a56(a56(x0)))) | → | a56(a56(a12(a12(x0)))) |
a23(a23(a45(a45(x0)))) | → | a45(a45(a23(a23(x0)))) |
a23(a23(a56(a56(x0)))) | → | a56(a56(a23(a23(x0)))) |
a34(a34(a56(a56(x0)))) | → | a56(a56(a34(a34(x0)))) |
[a16(x1)] | = | 6 · x1 + -∞ |
[a26(x1)] | = | 4 · x1 + -∞ |
[a13(x1)] | = | 4 · x1 + -∞ |
[a15(x1)] | = | 4 · x1 + -∞ |
[a23(x1)] | = | 0 · x1 + -∞ |
[a35(x1)] | = | 2 · x1 + -∞ |
[a12(x1)] | = | 1 · x1 + -∞ |
[a25(x1)] | = | 5 · x1 + -∞ |
[a56(x1)] | = | 0 · x1 + -∞ |
[a45(x1)] | = | 2 · x1 + -∞ |
[a36(x1)] | = | 4 · x1 + -∞ |
[a34(x1)] | = | 0 · x1 + -∞ |
[a46(x1)] | = | 6 · x1 + -∞ |
[a24(x1)] | = | 2 · x1 + -∞ |
[a14(x1)] | = | 4 · x1 + -∞ |
a23(a23(a23(a23(x0)))) | → | x0 |
a34(a34(a34(a34(x0)))) | → | x0 |
a56(a56(a56(a56(x0)))) | → | x0 |
a15(a15(x0)) | → | a12(a12(a23(a23(a34(a34(a45(a45(a34(a34(a23(a23(a12(a12(x0)))))))))))))) |
a16(a16(x0)) | → | a12(a12(a23(a23(a34(a34(a45(a45(a56(a56(a45(a45(a34(a34(a23(a23(a12(a12(x0)))))))))))))))))) |
a26(a26(x0)) | → | a23(a23(a34(a34(a45(a45(a56(a56(a45(a45(a34(a34(a23(a23(x0)))))))))))))) |
a35(a35(x0)) | → | a34(a34(a45(a45(a34(a34(x0)))))) |
a36(a36(x0)) | → | a34(a34(a45(a45(a56(a56(a45(a45(a34(a34(x0)))))))))) |
a23(a23(a34(a34(a23(a23(a34(a34(a23(a23(a34(a34(x0)))))))))))) | → | x0 |
a12(a12(a34(a34(x0)))) | → | a34(a34(a12(a12(x0)))) |
a12(a12(a45(a45(x0)))) | → | a45(a45(a12(a12(x0)))) |
a12(a12(a56(a56(x0)))) | → | a56(a56(a12(a12(x0)))) |
a23(a23(a45(a45(x0)))) | → | a45(a45(a23(a23(x0)))) |
a23(a23(a56(a56(x0)))) | → | a56(a56(a23(a23(x0)))) |
a34(a34(a56(a56(x0)))) | → | a56(a56(a34(a34(x0)))) |
[a16(x1)] | = | 8 · x1 + -∞ |
[a26(x1)] | = | 4 · x1 + -∞ |
[a15(x1)] | = | 4 · x1 + -∞ |
[a23(x1)] | = | 2 · x1 + -∞ |
[a35(x1)] | = | 6 · x1 + -∞ |
[a12(x1)] | = | 0 · x1 + -∞ |
[a56(x1)] | = | 0 · x1 + -∞ |
[a45(x1)] | = | 0 · x1 + -∞ |
[a36(x1)] | = | 1 · x1 + -∞ |
[a34(x1)] | = | 0 · x1 + -∞ |
a34(a34(a34(a34(x0)))) | → | x0 |
a56(a56(a56(a56(x0)))) | → | x0 |
a15(a15(x0)) | → | a12(a12(a23(a23(a34(a34(a45(a45(a34(a34(a23(a23(a12(a12(x0)))))))))))))) |
a26(a26(x0)) | → | a23(a23(a34(a34(a45(a45(a56(a56(a45(a45(a34(a34(a23(a23(x0)))))))))))))) |
a12(a12(a34(a34(x0)))) | → | a34(a34(a12(a12(x0)))) |
a12(a12(a45(a45(x0)))) | → | a45(a45(a12(a12(x0)))) |
a12(a12(a56(a56(x0)))) | → | a56(a56(a12(a12(x0)))) |
a23(a23(a45(a45(x0)))) | → | a45(a45(a23(a23(x0)))) |
a23(a23(a56(a56(x0)))) | → | a56(a56(a23(a23(x0)))) |
a34(a34(a56(a56(x0)))) | → | a56(a56(a34(a34(x0)))) |
[a26(x1)] | = | 11 · x1 + -∞ |
[a15(x1)] | = | 0 · x1 + -∞ |
[a23(x1)] | = | 0 · x1 + -∞ |
[a12(x1)] | = | 0 · x1 + -∞ |
[a56(x1)] | = | 3 · x1 + -∞ |
[a45(x1)] | = | 0 · x1 + -∞ |
[a34(x1)] | = | 0 · x1 + -∞ |
a34(a34(a34(a34(x0)))) | → | x0 |
a15(a15(x0)) | → | a12(a12(a23(a23(a34(a34(a45(a45(a34(a34(a23(a23(a12(a12(x0)))))))))))))) |
a12(a12(a34(a34(x0)))) | → | a34(a34(a12(a12(x0)))) |
a12(a12(a45(a45(x0)))) | → | a45(a45(a12(a12(x0)))) |
a12(a12(a56(a56(x0)))) | → | a56(a56(a12(a12(x0)))) |
a23(a23(a45(a45(x0)))) | → | a45(a45(a23(a23(x0)))) |
a23(a23(a56(a56(x0)))) | → | a56(a56(a23(a23(x0)))) |
a34(a34(a56(a56(x0)))) | → | a56(a56(a34(a34(x0)))) |
[a15(x1)] | = | 8 · x1 + -∞ |
[a23(x1)] | = | 0 · x1 + -∞ |
[a12(x1)] | = | 0 · x1 + -∞ |
[a56(x1)] | = | 0 · x1 + -∞ |
[a45(x1)] | = | 0 · x1 + -∞ |
[a34(x1)] | = | 0 · x1 + -∞ |
a34(a34(a34(a34(x0)))) | → | x0 |
a12(a12(a34(a34(x0)))) | → | a34(a34(a12(a12(x0)))) |
a12(a12(a45(a45(x0)))) | → | a45(a45(a12(a12(x0)))) |
a12(a12(a56(a56(x0)))) | → | a56(a56(a12(a12(x0)))) |
a23(a23(a45(a45(x0)))) | → | a45(a45(a23(a23(x0)))) |
a23(a23(a56(a56(x0)))) | → | a56(a56(a23(a23(x0)))) |
a34(a34(a56(a56(x0)))) | → | a56(a56(a34(a34(x0)))) |
prec(a56) | = | 0 | weight(a56) | = | 1 | ||||
prec(a45) | = | 0 | weight(a45) | = | 1 | ||||
prec(a34) | = | 2 | weight(a34) | = | 1 | ||||
prec(a23) | = | 1 | weight(a23) | = | 1 | ||||
prec(a12) | = | 3 | weight(a12) | = | 0 |
There are no rules in the TRS. Hence, it is terminating.