YES Termination w.r.t. Q proof of /home/cern_httpd/provide/research/cycsrs/tpdb/TPDB-d9b80194f163/SRS_Standard/Trafo_06/dup01.srs

(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a12(a12(a12(a12(x)))) → x
a13(a13(a13(a13(x)))) → x
a14(a14(a14(a14(x)))) → x
a15(a15(a15(a15(x)))) → x
a16(a16(a16(a16(x)))) → x
a23(a23(a23(a23(x)))) → x
a24(a24(a24(a24(x)))) → x
a25(a25(a25(a25(x)))) → x
a26(a26(a26(a26(x)))) → x
a34(a34(a34(a34(x)))) → x
a35(a35(a35(a35(x)))) → x
a36(a36(a36(a36(x)))) → x
a45(a45(a45(a45(x)))) → x
a46(a46(a46(a46(x)))) → x
a56(a56(a56(a56(x)))) → x
a13(a13(x)) → a12(a12(a23(a23(a12(a12(x))))))
a14(a14(x)) → a12(a12(a23(a23(a34(a34(a23(a23(a12(a12(x))))))))))
a15(a15(x)) → a12(a12(a23(a23(a34(a34(a45(a45(a34(a34(a23(a23(a12(a12(x))))))))))))))
a16(a16(x)) → a12(a12(a23(a23(a34(a34(a45(a45(a56(a56(a45(a45(a34(a34(a23(a23(a12(a12(x))))))))))))))))))
a24(a24(x)) → a23(a23(a34(a34(a23(a23(x))))))
a25(a25(x)) → a23(a23(a34(a34(a45(a45(a34(a34(a23(a23(x))))))))))
a26(a26(x)) → a23(a23(a34(a34(a45(a45(a56(a56(a45(a45(a34(a34(a23(a23(x))))))))))))))
a35(a35(x)) → a34(a34(a45(a45(a34(a34(x))))))
a36(a36(x)) → a34(a34(a45(a45(a56(a56(a45(a45(a34(a34(x))))))))))
a46(a46(x)) → a45(a45(a56(a56(a45(a45(x))))))
a12(a12(a23(a23(a12(a12(a23(a23(a12(a12(a23(a23(x)))))))))))) → x
a23(a23(a34(a34(a23(a23(a34(a34(a23(a23(a34(a34(x)))))))))))) → x
a34(a34(a45(a45(a34(a34(a45(a45(a34(a34(a45(a45(x)))))))))))) → x
a45(a45(a56(a56(a45(a45(a56(a56(a45(a45(a56(a56(x)))))))))))) → x
a12(a12(a34(a34(x)))) → a34(a34(a12(a12(x))))
a12(a12(a45(a45(x)))) → a45(a45(a12(a12(x))))
a12(a12(a56(a56(x)))) → a56(a56(a12(a12(x))))
a23(a23(a45(a45(x)))) → a45(a45(a23(a23(x))))
a23(a23(a56(a56(x)))) → a56(a56(a23(a23(x))))
a34(a34(a56(a56(x)))) → a56(a56(a34(a34(x))))

Q is empty.

(1) QTRS Reverse (EQUIVALENT transformation)

We applied the QTRS Reverse Processor [REVERSE].

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a12(a12(a12(a12(x)))) → x
a13(a13(a13(a13(x)))) → x
a14(a14(a14(a14(x)))) → x
a15(a15(a15(a15(x)))) → x
a16(a16(a16(a16(x)))) → x
a23(a23(a23(a23(x)))) → x
a24(a24(a24(a24(x)))) → x
a25(a25(a25(a25(x)))) → x
a26(a26(a26(a26(x)))) → x
a34(a34(a34(a34(x)))) → x
a35(a35(a35(a35(x)))) → x
a36(a36(a36(a36(x)))) → x
a45(a45(a45(a45(x)))) → x
a46(a46(a46(a46(x)))) → x
a56(a56(a56(a56(x)))) → x
a13(a13(x)) → a12(a12(a23(a23(a12(a12(x))))))
a14(a14(x)) → a12(a12(a23(a23(a34(a34(a23(a23(a12(a12(x))))))))))
a15(a15(x)) → a12(a12(a23(a23(a34(a34(a45(a45(a34(a34(a23(a23(a12(a12(x))))))))))))))
a16(a16(x)) → a12(a12(a23(a23(a34(a34(a45(a45(a56(a56(a45(a45(a34(a34(a23(a23(a12(a12(x))))))))))))))))))
a24(a24(x)) → a23(a23(a34(a34(a23(a23(x))))))
a25(a25(x)) → a23(a23(a34(a34(a45(a45(a34(a34(a23(a23(x))))))))))
a26(a26(x)) → a23(a23(a34(a34(a45(a45(a56(a56(a45(a45(a34(a34(a23(a23(x))))))))))))))
a35(a35(x)) → a34(a34(a45(a45(a34(a34(x))))))
a36(a36(x)) → a34(a34(a45(a45(a56(a56(a45(a45(a34(a34(x))))))))))
a46(a46(x)) → a45(a45(a56(a56(a45(a45(x))))))
a23(a23(a12(a12(a23(a23(a12(a12(a23(a23(a12(a12(x)))))))))))) → x
a34(a34(a23(a23(a34(a34(a23(a23(a34(a34(a23(a23(x)))))))))))) → x
a45(a45(a34(a34(a45(a45(a34(a34(a45(a45(a34(a34(x)))))))))))) → x
a56(a56(a45(a45(a56(a56(a45(a45(a56(a56(a45(a45(x)))))))))))) → x
a34(a34(a12(a12(x)))) → a12(a12(a34(a34(x))))
a45(a45(a12(a12(x)))) → a12(a12(a45(a45(x))))
a56(a56(a12(a12(x)))) → a12(a12(a56(a56(x))))
a45(a45(a23(a23(x)))) → a23(a23(a45(a45(x))))
a56(a56(a23(a23(x)))) → a23(a23(a56(a56(x))))
a56(a56(a34(a34(x)))) → a34(a34(a56(a56(x))))

Q is empty.

(3) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Polynomial interpretation [POLO]:

POL(a12(x1)) = x1   
POL(a13(x1)) = 2 + x1   
POL(a14(x1)) = 4 + x1   
POL(a15(x1)) = 6 + x1   
POL(a16(x1)) = 9 + x1   
POL(a23(x1)) = 1 + x1   
POL(a24(x1)) = 4 + x1   
POL(a25(x1)) = 6 + x1   
POL(a26(x1)) = 8 + x1   
POL(a34(x1)) = 1 + x1   
POL(a35(x1)) = 4 + x1   
POL(a36(x1)) = 6 + x1   
POL(a45(x1)) = 1 + x1   
POL(a46(x1)) = 4 + x1   
POL(a56(x1)) = 1 + x1   
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

a13(a13(a13(a13(x)))) → x
a14(a14(a14(a14(x)))) → x
a15(a15(a15(a15(x)))) → x
a16(a16(a16(a16(x)))) → x
a23(a23(a23(a23(x)))) → x
a24(a24(a24(a24(x)))) → x
a25(a25(a25(a25(x)))) → x
a26(a26(a26(a26(x)))) → x
a34(a34(a34(a34(x)))) → x
a35(a35(a35(a35(x)))) → x
a36(a36(a36(a36(x)))) → x
a45(a45(a45(a45(x)))) → x
a46(a46(a46(a46(x)))) → x
a56(a56(a56(a56(x)))) → x
a13(a13(x)) → a12(a12(a23(a23(a12(a12(x))))))
a14(a14(x)) → a12(a12(a23(a23(a34(a34(a23(a23(a12(a12(x))))))))))
a15(a15(x)) → a12(a12(a23(a23(a34(a34(a45(a45(a34(a34(a23(a23(a12(a12(x))))))))))))))
a16(a16(x)) → a12(a12(a23(a23(a34(a34(a45(a45(a56(a56(a45(a45(a34(a34(a23(a23(a12(a12(x))))))))))))))))))
a24(a24(x)) → a23(a23(a34(a34(a23(a23(x))))))
a25(a25(x)) → a23(a23(a34(a34(a45(a45(a34(a34(a23(a23(x))))))))))
a26(a26(x)) → a23(a23(a34(a34(a45(a45(a56(a56(a45(a45(a34(a34(a23(a23(x))))))))))))))
a35(a35(x)) → a34(a34(a45(a45(a34(a34(x))))))
a36(a36(x)) → a34(a34(a45(a45(a56(a56(a45(a45(a34(a34(x))))))))))
a46(a46(x)) → a45(a45(a56(a56(a45(a45(x))))))
a23(a23(a12(a12(a23(a23(a12(a12(a23(a23(a12(a12(x)))))))))))) → x
a34(a34(a23(a23(a34(a34(a23(a23(a34(a34(a23(a23(x)))))))))))) → x
a45(a45(a34(a34(a45(a45(a34(a34(a45(a45(a34(a34(x)))))))))))) → x
a56(a56(a45(a45(a56(a56(a45(a45(a56(a56(a45(a45(x)))))))))))) → x


(4) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a12(a12(a12(a12(x)))) → x
a34(a34(a12(a12(x)))) → a12(a12(a34(a34(x))))
a45(a45(a12(a12(x)))) → a12(a12(a45(a45(x))))
a56(a56(a12(a12(x)))) → a12(a12(a56(a56(x))))
a45(a45(a23(a23(x)))) → a23(a23(a45(a45(x))))
a56(a56(a23(a23(x)))) → a23(a23(a56(a56(x))))
a56(a56(a34(a34(x)))) → a34(a34(a56(a56(x))))

Q is empty.

(5) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Polynomial interpretation [POLO]:

POL(a12(x1)) = 1 + x1   
POL(a23(x1)) = x1   
POL(a34(x1)) = x1   
POL(a45(x1)) = x1   
POL(a56(x1)) = x1   
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

a12(a12(a12(a12(x)))) → x


(6) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a34(a34(a12(a12(x)))) → a12(a12(a34(a34(x))))
a45(a45(a12(a12(x)))) → a12(a12(a45(a45(x))))
a56(a56(a12(a12(x)))) → a12(a12(a56(a56(x))))
a45(a45(a23(a23(x)))) → a23(a23(a45(a45(x))))
a56(a56(a23(a23(x)))) → a23(a23(a56(a56(x))))
a56(a56(a34(a34(x)))) → a34(a34(a56(a56(x))))

Q is empty.

(7) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A34(a34(a12(a12(x)))) → A34(a34(x))
A34(a34(a12(a12(x)))) → A34(x)
A45(a45(a12(a12(x)))) → A45(a45(x))
A45(a45(a12(a12(x)))) → A45(x)
A56(a56(a12(a12(x)))) → A56(a56(x))
A56(a56(a12(a12(x)))) → A56(x)
A45(a45(a23(a23(x)))) → A45(a45(x))
A45(a45(a23(a23(x)))) → A45(x)
A56(a56(a23(a23(x)))) → A56(a56(x))
A56(a56(a23(a23(x)))) → A56(x)
A56(a56(a34(a34(x)))) → A34(a34(a56(a56(x))))
A56(a56(a34(a34(x)))) → A34(a56(a56(x)))
A56(a56(a34(a34(x)))) → A56(a56(x))
A56(a56(a34(a34(x)))) → A56(x)

The TRS R consists of the following rules:

a34(a34(a12(a12(x)))) → a12(a12(a34(a34(x))))
a45(a45(a12(a12(x)))) → a12(a12(a45(a45(x))))
a56(a56(a12(a12(x)))) → a12(a12(a56(a56(x))))
a45(a45(a23(a23(x)))) → a23(a23(a45(a45(x))))
a56(a56(a23(a23(x)))) → a23(a23(a56(a56(x))))
a56(a56(a34(a34(x)))) → a34(a34(a56(a56(x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(9) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 2 less nodes.

(10) Complex Obligation (AND)

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A45(a45(a12(a12(x)))) → A45(x)
A45(a45(a12(a12(x)))) → A45(a45(x))
A45(a45(a23(a23(x)))) → A45(a45(x))
A45(a45(a23(a23(x)))) → A45(x)

The TRS R consists of the following rules:

a34(a34(a12(a12(x)))) → a12(a12(a34(a34(x))))
a45(a45(a12(a12(x)))) → a12(a12(a45(a45(x))))
a56(a56(a12(a12(x)))) → a12(a12(a56(a56(x))))
a45(a45(a23(a23(x)))) → a23(a23(a45(a45(x))))
a56(a56(a23(a23(x)))) → a23(a23(a56(a56(x))))
a56(a56(a34(a34(x)))) → a34(a34(a56(a56(x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A45(a45(a12(a12(x)))) → A45(x)
A45(a45(a12(a12(x)))) → A45(a45(x))
A45(a45(a23(a23(x)))) → A45(a45(x))
A45(a45(a23(a23(x)))) → A45(x)

The TRS R consists of the following rules:

a45(a45(a12(a12(x)))) → a12(a12(a45(a45(x))))
a45(a45(a23(a23(x)))) → a23(a23(a45(a45(x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(14) MNOCProof (EQUIVALENT transformation)

We use the modular non-overlap check [LPAR04] to enlarge Q to all left-hand sides of R.

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A45(a45(a12(a12(x)))) → A45(x)
A45(a45(a12(a12(x)))) → A45(a45(x))
A45(a45(a23(a23(x)))) → A45(a45(x))
A45(a45(a23(a23(x)))) → A45(x)

The TRS R consists of the following rules:

a45(a45(a12(a12(x)))) → a12(a12(a45(a45(x))))
a45(a45(a23(a23(x)))) → a23(a23(a45(a45(x))))

The set Q consists of the following terms:

a45(a45(a12(a12(x0))))
a45(a45(a23(a23(x0))))

We have to consider all minimal (P,Q,R)-chains.

(16) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

A45(a45(a12(a12(x)))) → A45(x)
A45(a45(a12(a12(x)))) → A45(a45(x))
A45(a45(a23(a23(x)))) → A45(a45(x))
A45(a45(a23(a23(x)))) → A45(x)

Strictly oriented rules of the TRS R:

a45(a45(a12(a12(x)))) → a12(a12(a45(a45(x))))

Used ordering: Polynomial interpretation [POLO]:

POL(A45(x1)) = 2·x1   
POL(a12(x1)) = 2 + 2·x1   
POL(a23(x1)) = 3 + 3·x1   
POL(a45(x1)) = 3 + 3·x1   

(17) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a45(a45(a23(a23(x)))) → a23(a23(a45(a45(x))))

The set Q consists of the following terms:

a45(a45(a12(a12(x0))))
a45(a45(a23(a23(x0))))

We have to consider all minimal (P,Q,R)-chains.

(18) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(19) YES

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A34(a34(a12(a12(x)))) → A34(x)
A34(a34(a12(a12(x)))) → A34(a34(x))

The TRS R consists of the following rules:

a34(a34(a12(a12(x)))) → a12(a12(a34(a34(x))))
a45(a45(a12(a12(x)))) → a12(a12(a45(a45(x))))
a56(a56(a12(a12(x)))) → a12(a12(a56(a56(x))))
a45(a45(a23(a23(x)))) → a23(a23(a45(a45(x))))
a56(a56(a23(a23(x)))) → a23(a23(a56(a56(x))))
a56(a56(a34(a34(x)))) → a34(a34(a56(a56(x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A34(a34(a12(a12(x)))) → A34(x)
A34(a34(a12(a12(x)))) → A34(a34(x))

The TRS R consists of the following rules:

a34(a34(a12(a12(x)))) → a12(a12(a34(a34(x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) MNOCProof (EQUIVALENT transformation)

We use the modular non-overlap check [LPAR04] to enlarge Q to all left-hand sides of R.

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A34(a34(a12(a12(x)))) → A34(x)
A34(a34(a12(a12(x)))) → A34(a34(x))

The TRS R consists of the following rules:

a34(a34(a12(a12(x)))) → a12(a12(a34(a34(x))))

The set Q consists of the following terms:

a34(a34(a12(a12(x0))))

We have to consider all minimal (P,Q,R)-chains.

(25) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

A34(a34(a12(a12(x)))) → A34(x)


Used ordering: Polynomial interpretation [POLO]:

POL(A34(x1)) = 2·x1   
POL(a12(x1)) = x1   
POL(a34(x1)) = 1 + 2·x1   

(26) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A34(a34(a12(a12(x)))) → A34(a34(x))

The TRS R consists of the following rules:

a34(a34(a12(a12(x)))) → a12(a12(a34(a34(x))))

The set Q consists of the following terms:

a34(a34(a12(a12(x0))))

We have to consider all minimal (P,Q,R)-chains.

(27) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


A34(a34(a12(a12(x)))) → A34(a34(x))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(A34(x1)) = x1   
POL(a12(x1)) = 1 + x1   
POL(a34(x1)) = x1   

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

a34(a34(a12(a12(x)))) → a12(a12(a34(a34(x))))

(28) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a34(a34(a12(a12(x)))) → a12(a12(a34(a34(x))))

The set Q consists of the following terms:

a34(a34(a12(a12(x0))))

We have to consider all minimal (P,Q,R)-chains.

(29) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(30) YES

(31) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A56(a56(a12(a12(x)))) → A56(x)
A56(a56(a12(a12(x)))) → A56(a56(x))
A56(a56(a23(a23(x)))) → A56(a56(x))
A56(a56(a23(a23(x)))) → A56(x)
A56(a56(a34(a34(x)))) → A56(a56(x))
A56(a56(a34(a34(x)))) → A56(x)

The TRS R consists of the following rules:

a34(a34(a12(a12(x)))) → a12(a12(a34(a34(x))))
a45(a45(a12(a12(x)))) → a12(a12(a45(a45(x))))
a56(a56(a12(a12(x)))) → a12(a12(a56(a56(x))))
a45(a45(a23(a23(x)))) → a23(a23(a45(a45(x))))
a56(a56(a23(a23(x)))) → a23(a23(a56(a56(x))))
a56(a56(a34(a34(x)))) → a34(a34(a56(a56(x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(32) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(33) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A56(a56(a12(a12(x)))) → A56(x)
A56(a56(a12(a12(x)))) → A56(a56(x))
A56(a56(a23(a23(x)))) → A56(a56(x))
A56(a56(a23(a23(x)))) → A56(x)
A56(a56(a34(a34(x)))) → A56(a56(x))
A56(a56(a34(a34(x)))) → A56(x)

The TRS R consists of the following rules:

a56(a56(a12(a12(x)))) → a12(a12(a56(a56(x))))
a56(a56(a23(a23(x)))) → a23(a23(a56(a56(x))))
a56(a56(a34(a34(x)))) → a34(a34(a56(a56(x))))
a34(a34(a12(a12(x)))) → a12(a12(a34(a34(x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(34) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


A56(a56(a12(a12(x)))) → A56(x)
A56(a56(a12(a12(x)))) → A56(a56(x))
A56(a56(a23(a23(x)))) → A56(a56(x))
A56(a56(a23(a23(x)))) → A56(x)
A56(a56(a34(a34(x)))) → A56(a56(x))
A56(a56(a34(a34(x)))) → A56(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( A56(x1) ) = x1 + 2

POL( a56(x1) ) = 2x1 + 1

POL( a12(x1) ) = 2x1 + 1

POL( a23(x1) ) = x1 + 1

POL( a34(x1) ) = 2x1 + 1


The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

a56(a56(a12(a12(x)))) → a12(a12(a56(a56(x))))
a56(a56(a23(a23(x)))) → a23(a23(a56(a56(x))))
a56(a56(a34(a34(x)))) → a34(a34(a56(a56(x))))
a34(a34(a12(a12(x)))) → a12(a12(a34(a34(x))))

(35) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a56(a56(a12(a12(x)))) → a12(a12(a56(a56(x))))
a56(a56(a23(a23(x)))) → a23(a23(a56(a56(x))))
a56(a56(a34(a34(x)))) → a34(a34(a56(a56(x))))
a34(a34(a12(a12(x)))) → a12(a12(a34(a34(x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(36) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(37) YES