YES Termination Proof

Termination Proof

by ttt2 (version ttt2 1.15)

Input

The rewrite relation of the following TRS is considered.

a(a(b(c(x0)))) b(b(a(a(x0))))
b(x0) c(c(a(a(x0))))
b(c(x0)) a(x0)
a(a(c(x0))) x0

Proof

1 Rule Removal

Using the linear polynomial interpretation over (2 x 2)-matrices with strict dimension 1 over the arctic semiring over the integers
[b(x1)] =
3 3
3 0
· x1 +
-∞ -∞
-∞ -∞
[c(x1)] =
0 0
3 0
· x1 +
-∞ -∞
-∞ -∞
[a(x1)] =
0 -∞
0 -∞
· x1 +
-∞ -∞
-∞ -∞
the rules
a(a(b(c(x0)))) b(b(a(a(x0))))
b(x0) c(c(a(a(x0))))
a(a(c(x0))) x0
remain.

1.1 Dependency Pair Transformation

The following set of initial dependency pairs has been identified.
a#(a(b(c(x0)))) a#(x0)
a#(a(b(c(x0)))) a#(a(x0))
a#(a(b(c(x0)))) b#(a(a(x0)))
a#(a(b(c(x0)))) b#(b(a(a(x0))))
b#(x0) a#(x0)
b#(x0) a#(a(x0))

1.1.1 Reduction Pair Processor with Usable Rules

Using the linear polynomial interpretation over (2 x 2)-matrices with strict dimension 1 over the arctic semiring over the integers
[b#(x1)] =
1 1
-∞ -∞
· x1 +
0 -∞
-∞ -∞
[b(x1)] =
0 1
0 0
· x1 +
3 -∞
1 -∞
[a#(x1)] =
0 -∞
-∞ -∞
· x1 +
-∞ -∞
-∞ -∞
[c(x1)] =
0 1
-∞ 0
· x1 +
3 -∞
0 -∞
[a(x1)] =
0 1
-∞ 0
· x1 +
0 -∞
1 -∞
together with the usable rules
a(a(b(c(x0)))) b(b(a(a(x0))))
b(x0) c(c(a(a(x0))))
a(a(c(x0))) x0
(w.r.t. the implicit argument filter of the reduction pair), the pairs
a#(a(b(c(x0)))) b#(a(a(x0)))
a#(a(b(c(x0)))) b#(b(a(a(x0))))
b#(x0) a#(a(x0))
remain.

1.1.1.1 Reduction Pair Processor with Usable Rules

Using the linear polynomial interpretation over (2 x 2)-matrices with strict dimension 1 over the arctic semiring over the integers
[b#(x1)] =
0 0
-∞ -∞
· x1 +
0 -∞
-∞ -∞
[b(x1)] =
0 2
0 0
· x1 +
3 -∞
1 -∞
[a#(x1)] =
-∞ 0
-∞ -∞
· x1 +
0 -∞
-∞ -∞
[c(x1)] =
0 -∞
0 0
· x1 +
0 -∞
-∞ -∞
[a(x1)] =
0 0
0 0
· x1 +
1 -∞
0 -∞
together with the usable rules
a(a(b(c(x0)))) b(b(a(a(x0))))
b(x0) c(c(a(a(x0))))
a(a(c(x0))) x0
(w.r.t. the implicit argument filter of the reduction pair), the pairs
a#(a(b(c(x0)))) b#(b(a(a(x0))))
b#(x0) a#(a(x0))
remain.

1.1.1.1.1 Reduction Pair Processor with Usable Rules

Using the linear polynomial interpretation over (2 x 2)-matrices with strict dimension 1 over the arctic semiring over the integers
[b#(x1)] =
-∞ 2
-∞ -∞
· x1 +
1 -∞
-∞ -∞
[b(x1)] =
-∞ 2
2 2
· x1 +
2 -∞
2 -∞
[a#(x1)] =
-∞ 0
-∞ -∞
· x1 +
0 -∞
-∞ -∞
[c(x1)] =
-∞ 2
0 0
· x1 +
2 -∞
-4 -∞
[a(x1)] =
-∞ 0
-∞ 0
· x1 +
0 -∞
0 -∞
together with the usable rules
a(a(b(c(x0)))) b(b(a(a(x0))))
b(x0) c(c(a(a(x0))))
a(a(c(x0))) x0
(w.r.t. the implicit argument filter of the reduction pair), the pair
a#(a(b(c(x0)))) b#(b(a(a(x0))))
remains.

1.1.1.1.1.1 Dependency Graph Processor

The dependency pairs are split into 0 components.