YES
Termination Proof
Termination Proof
by ttt2 (version ttt2 1.15)
Input
The rewrite relation of the following TRS is considered.
a(a(b(c(x0)))) |
→ |
b(b(a(a(x0)))) |
b(x0) |
→ |
c(c(a(a(x0)))) |
b(c(x0)) |
→ |
a(x0) |
a(a(c(x0))) |
→ |
x0 |
Proof
1 Rule Removal
Using the
linear polynomial interpretation over (2 x 2)-matrices with strict dimension 1
over the arctic semiring over the integers
[b(x1)] |
= |
·
x1 +
|
[c(x1)] |
= |
·
x1 +
|
[a(x1)] |
= |
·
x1 +
|
the
rules
a(a(b(c(x0)))) |
→ |
b(b(a(a(x0)))) |
b(x0) |
→ |
c(c(a(a(x0)))) |
a(a(c(x0))) |
→ |
x0 |
remain.
1.1 Dependency Pair Transformation
The following set of initial dependency pairs has been identified.
a#(a(b(c(x0)))) |
→ |
a#(x0) |
a#(a(b(c(x0)))) |
→ |
a#(a(x0)) |
a#(a(b(c(x0)))) |
→ |
b#(a(a(x0))) |
a#(a(b(c(x0)))) |
→ |
b#(b(a(a(x0)))) |
b#(x0) |
→ |
a#(x0) |
b#(x0) |
→ |
a#(a(x0)) |
1.1.1 Reduction Pair Processor with Usable Rules
Using the linear polynomial interpretation over (2 x 2)-matrices with strict dimension 1
over the arctic semiring over the integers
[b#(x1)] |
= |
·
x1 +
|
[b(x1)] |
= |
·
x1 +
|
[a#(x1)] |
= |
·
x1 +
|
[c(x1)] |
= |
·
x1 +
|
[a(x1)] |
= |
·
x1 +
|
together with the usable
rules
a(a(b(c(x0)))) |
→ |
b(b(a(a(x0)))) |
b(x0) |
→ |
c(c(a(a(x0)))) |
a(a(c(x0))) |
→ |
x0 |
(w.r.t. the implicit argument filter of the reduction pair),
the
pairs
a#(a(b(c(x0)))) |
→ |
b#(a(a(x0))) |
a#(a(b(c(x0)))) |
→ |
b#(b(a(a(x0)))) |
b#(x0) |
→ |
a#(a(x0)) |
remain.
1.1.1.1 Reduction Pair Processor with Usable Rules
Using the linear polynomial interpretation over (2 x 2)-matrices with strict dimension 1
over the arctic semiring over the integers
[b#(x1)] |
= |
·
x1 +
|
[b(x1)] |
= |
·
x1 +
|
[a#(x1)] |
= |
·
x1 +
|
[c(x1)] |
= |
·
x1 +
|
[a(x1)] |
= |
·
x1 +
|
together with the usable
rules
a(a(b(c(x0)))) |
→ |
b(b(a(a(x0)))) |
b(x0) |
→ |
c(c(a(a(x0)))) |
a(a(c(x0))) |
→ |
x0 |
(w.r.t. the implicit argument filter of the reduction pair),
the
pairs
a#(a(b(c(x0)))) |
→ |
b#(b(a(a(x0)))) |
b#(x0) |
→ |
a#(a(x0)) |
remain.
1.1.1.1.1 Reduction Pair Processor with Usable Rules
Using the linear polynomial interpretation over (2 x 2)-matrices with strict dimension 1
over the arctic semiring over the integers
[b#(x1)] |
= |
·
x1 +
|
[b(x1)] |
= |
·
x1 +
|
[a#(x1)] |
= |
·
x1 +
|
[c(x1)] |
= |
·
x1 +
|
[a(x1)] |
= |
·
x1 +
|
together with the usable
rules
a(a(b(c(x0)))) |
→ |
b(b(a(a(x0)))) |
b(x0) |
→ |
c(c(a(a(x0)))) |
a(a(c(x0))) |
→ |
x0 |
(w.r.t. the implicit argument filter of the reduction pair),
the
pair
a#(a(b(c(x0)))) |
→ |
b#(b(a(a(x0)))) |
remains.
1.1.1.1.1.1 Dependency Graph Processor
The dependency pairs are split into 0
components.