YES Termination w.r.t. Q proof of /home/cern_httpd/provide/research/cycsrs/tpdb/TPDB-d9b80194f163/SRS_Standard/Secret_07_SRS/x06.srs

(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a(b(x)) → c(b(x))
c(c(x)) → d(b(x))
d(x) → c(e(x))
b(b(x)) → f(x)
c(b(x)) → g(x)
e(x) → f(x)
e(x) → b(b(x))
f(g(x)) → a(c(x))
g(f(x)) → e(x)
a(x) → b(c(x))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A(b(x)) → C(b(x))
C(c(x)) → D(b(x))
C(c(x)) → B(x)
D(x) → C(e(x))
D(x) → E(x)
B(b(x)) → F(x)
C(b(x)) → G(x)
E(x) → F(x)
E(x) → B(b(x))
E(x) → B(x)
F(g(x)) → A(c(x))
F(g(x)) → C(x)
G(f(x)) → E(x)
A(x) → B(c(x))
A(x) → C(x)

The TRS R consists of the following rules:

a(b(x)) → c(b(x))
c(c(x)) → d(b(x))
d(x) → c(e(x))
b(b(x)) → f(x)
c(b(x)) → g(x)
e(x) → f(x)
e(x) → b(b(x))
f(g(x)) → a(c(x))
g(f(x)) → e(x)
a(x) → b(c(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


E(x) → F(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(A(x1)) = 0A +
[0A,0A,1A]
·x1

POL(b(x1)) =
/-I\
|0A|
\-I/
+
/0A-I0A\
|0A0A0A|
\0A-I0A/
·x1

POL(C(x1)) = 0A +
[0A,0A,1A]
·x1

POL(c(x1)) =
/0A\
|0A|
\-I/
+
/0A0A1A\
|0A0A0A|
\0A-I0A/
·x1

POL(D(x1)) = 0A +
[1A,0A,1A]
·x1

POL(B(x1)) = 0A +
[0A,0A,0A]
·x1

POL(e(x1)) =
/-I\
|0A|
\-I/
+
/0A-I0A\
|0A0A0A|
\0A-I0A/
·x1

POL(E(x1)) = 0A +
[1A,0A,0A]
·x1

POL(F(x1)) = -I +
[0A,-I,-I]
·x1

POL(G(x1)) = 0A +
[0A,0A,1A]
·x1

POL(g(x1)) =
/0A\
|0A|
\-I/
+
/1A0A1A\
|0A0A-I|
\0A-I-I/
·x1

POL(f(x1)) =
/-I\
|0A|
\-I/
+
/0A-I0A\
|0A0A-I|
\0A-I0A/
·x1

POL(d(x1)) =
/0A\
|0A|
\-I/
+
/1A0A1A\
|0A0A0A|
\0A-I0A/
·x1

POL(a(x1)) =
/0A\
|0A|
\0A/
+
/0A0A1A\
|0A0A1A|
\0A0A1A/
·x1

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

c(c(x)) → d(b(x))
d(x) → c(e(x))
c(b(x)) → g(x)
g(f(x)) → e(x)
e(x) → f(x)
f(g(x)) → a(c(x))
a(b(x)) → c(b(x))
a(x) → b(c(x))
b(b(x)) → f(x)
e(x) → b(b(x))

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A(b(x)) → C(b(x))
C(c(x)) → D(b(x))
C(c(x)) → B(x)
D(x) → C(e(x))
D(x) → E(x)
B(b(x)) → F(x)
C(b(x)) → G(x)
E(x) → B(b(x))
E(x) → B(x)
F(g(x)) → A(c(x))
F(g(x)) → C(x)
G(f(x)) → E(x)
A(x) → B(c(x))
A(x) → C(x)

The TRS R consists of the following rules:

a(b(x)) → c(b(x))
c(c(x)) → d(b(x))
d(x) → c(e(x))
b(b(x)) → f(x)
c(b(x)) → g(x)
e(x) → f(x)
e(x) → b(b(x))
f(g(x)) → a(c(x))
g(f(x)) → e(x)
a(x) → b(c(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


F(g(x)) → C(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(A(x1)) = 0A +
[-I,0A,0A]
·x1

POL(b(x1)) =
/0A\
|-I|
\-I/
+
/0A0A0A\
|-I0A0A|
\-I0A0A/
·x1

POL(C(x1)) = 0A +
[-I,0A,0A]
·x1

POL(c(x1)) =
/0A\
|-I|
\-I/
+
/0A0A0A\
|1A0A0A|
\-I0A0A/
·x1

POL(D(x1)) = 0A +
[0A,0A,0A]
·x1

POL(B(x1)) = 0A +
[-I,-I,0A]
·x1

POL(e(x1)) =
/0A\
|-I|
\-I/
+
/0A0A0A\
|-I0A0A|
\-I0A0A/
·x1

POL(E(x1)) = 0A +
[-I,0A,0A]
·x1

POL(F(x1)) = 0A +
[-I,0A,0A]
·x1

POL(G(x1)) = 0A +
[-I,0A,0A]
·x1

POL(g(x1)) =
/0A\
|1A|
\-I/
+
/0A0A0A\
|1A1A1A|
\-I0A0A/
·x1

POL(f(x1)) =
/0A\
|-I|
\-I/
+
/0A0A0A\
|-I0A0A|
\-I0A-I/
·x1

POL(d(x1)) =
/0A\
|1A|
\-I/
+
/0A0A0A\
|1A1A1A|
\-I0A0A/
·x1

POL(a(x1)) =
/0A\
|0A|
\0A/
+
/1A0A0A\
|1A0A0A|
\1A0A0A/
·x1

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

c(c(x)) → d(b(x))
d(x) → c(e(x))
c(b(x)) → g(x)
g(f(x)) → e(x)
e(x) → f(x)
f(g(x)) → a(c(x))
a(b(x)) → c(b(x))
a(x) → b(c(x))
b(b(x)) → f(x)
e(x) → b(b(x))

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A(b(x)) → C(b(x))
C(c(x)) → D(b(x))
C(c(x)) → B(x)
D(x) → C(e(x))
D(x) → E(x)
B(b(x)) → F(x)
C(b(x)) → G(x)
E(x) → B(b(x))
E(x) → B(x)
F(g(x)) → A(c(x))
G(f(x)) → E(x)
A(x) → B(c(x))
A(x) → C(x)

The TRS R consists of the following rules:

a(b(x)) → c(b(x))
c(c(x)) → d(b(x))
d(x) → c(e(x))
b(b(x)) → f(x)
c(b(x)) → g(x)
e(x) → f(x)
e(x) → b(b(x))
f(g(x)) → a(c(x))
g(f(x)) → e(x)
a(x) → b(c(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


F(g(x)) → A(c(x))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(A(x1)) = 0A +
[0A,0A,-I]
·x1

POL(b(x1)) =
/0A\
|0A|
\0A/
+
/0A0A0A\
|0A0A0A|
\0A0A0A/
·x1

POL(C(x1)) = 0A +
[0A,0A,-I]
·x1

POL(c(x1)) =
/0A\
|0A|
\0A/
+
/0A0A-I\
|0A0A0A|
\0A1A0A/
·x1

POL(D(x1)) = 0A +
[0A,0A,0A]
·x1

POL(B(x1)) = 0A +
[0A,-I,-I]
·x1

POL(e(x1)) =
/0A\
|0A|
\0A/
+
/0A0A0A\
|0A0A0A|
\0A0A0A/
·x1

POL(E(x1)) = 0A +
[0A,0A,0A]
·x1

POL(F(x1)) = 0A +
[0A,0A,0A]
·x1

POL(G(x1)) = 0A +
[0A,0A,0A]
·x1

POL(g(x1)) =
/0A\
|0A|
\1A/
+
/0A0A0A\
|0A0A0A|
\1A1A1A/
·x1

POL(f(x1)) =
/0A\
|0A|
\0A/
+
/-I0A0A\
|0A0A0A|
\0A0A0A/
·x1

POL(d(x1)) =
/0A\
|0A|
\1A/
+
/0A0A0A\
|0A0A0A|
\1A1A1A/
·x1

POL(a(x1)) =
/0A\
|0A|
\0A/
+
/0A1A0A\
|0A1A0A|
\0A1A0A/
·x1

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

c(c(x)) → d(b(x))
d(x) → c(e(x))
c(b(x)) → g(x)
g(f(x)) → e(x)
e(x) → f(x)
f(g(x)) → a(c(x))
a(b(x)) → c(b(x))
a(x) → b(c(x))
b(b(x)) → f(x)
e(x) → b(b(x))

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A(b(x)) → C(b(x))
C(c(x)) → D(b(x))
C(c(x)) → B(x)
D(x) → C(e(x))
D(x) → E(x)
B(b(x)) → F(x)
C(b(x)) → G(x)
E(x) → B(b(x))
E(x) → B(x)
G(f(x)) → E(x)
A(x) → B(c(x))
A(x) → C(x)

The TRS R consists of the following rules:

a(b(x)) → c(b(x))
c(c(x)) → d(b(x))
d(x) → c(e(x))
b(b(x)) → f(x)
c(b(x)) → g(x)
e(x) → f(x)
e(x) → b(b(x))
f(g(x)) → a(c(x))
g(f(x)) → e(x)
a(x) → b(c(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(9) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 10 less nodes.

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

D(x) → C(e(x))
C(c(x)) → D(b(x))

The TRS R consists of the following rules:

a(b(x)) → c(b(x))
c(c(x)) → d(b(x))
d(x) → c(e(x))
b(b(x)) → f(x)
c(b(x)) → g(x)
e(x) → f(x)
e(x) → b(b(x))
f(g(x)) → a(c(x))
g(f(x)) → e(x)
a(x) → b(c(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


C(c(x)) → D(b(x))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(D(x1)) = 0A +
[0A,0A,0A]
·x1

POL(C(x1)) = 0A +
[0A,0A,0A]
·x1

POL(e(x1)) =
/0A\
|0A|
\0A/
+
/-I0A0A\
|-I0A0A|
\-I0A0A/
·x1

POL(c(x1)) =
/1A\
|0A|
\0A/
+
/-I1A0A\
|-I0A1A|
\-I0A0A/
·x1

POL(b(x1)) =
/0A\
|0A|
\0A/
+
/-I0A0A\
|-I0A0A|
\-I0A0A/
·x1

POL(d(x1)) =
/1A\
|1A|
\0A/
+
/0A1A1A\
|0A1A1A|
\-I0A0A/
·x1

POL(g(x1)) =
/0A\
|1A|
\-I/
+
/-I0A1A\
|-I1A1A|
\-I-I0A/
·x1

POL(f(x1)) =
/0A\
|0A|
\0A/
+
/-I0A0A\
|-I0A0A|
\-I0A0A/
·x1

POL(a(x1)) =
/0A\
|0A|
\0A/
+
/0A0A1A\
|0A0A1A|
\0A0A1A/
·x1

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

c(c(x)) → d(b(x))
d(x) → c(e(x))
c(b(x)) → g(x)
g(f(x)) → e(x)
e(x) → f(x)
f(g(x)) → a(c(x))
a(b(x)) → c(b(x))
a(x) → b(c(x))
b(b(x)) → f(x)
e(x) → b(b(x))

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

D(x) → C(e(x))

The TRS R consists of the following rules:

a(b(x)) → c(b(x))
c(c(x)) → d(b(x))
d(x) → c(e(x))
b(b(x)) → f(x)
c(b(x)) → g(x)
e(x) → f(x)
e(x) → b(b(x))
f(g(x)) → a(c(x))
g(f(x)) → e(x)
a(x) → b(c(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(14) TRUE