(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
a(b(x)) → c(b(x))
c(c(x)) → d(b(x))
d(x) → c(e(x))
b(b(x)) → f(x)
c(b(x)) → g(x)
e(x) → f(x)
e(x) → b(b(x))
f(g(x)) → a(c(x))
g(f(x)) → e(x)
a(x) → b(c(x))
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
A(b(x)) → C(b(x))
C(c(x)) → D(b(x))
C(c(x)) → B(x)
D(x) → C(e(x))
D(x) → E(x)
B(b(x)) → F(x)
C(b(x)) → G(x)
E(x) → F(x)
E(x) → B(b(x))
E(x) → B(x)
F(g(x)) → A(c(x))
F(g(x)) → C(x)
G(f(x)) → E(x)
A(x) → B(c(x))
A(x) → C(x)
The TRS R consists of the following rules:
a(b(x)) → c(b(x))
c(c(x)) → d(b(x))
d(x) → c(e(x))
b(b(x)) → f(x)
c(b(x)) → g(x)
e(x) → f(x)
e(x) → b(b(x))
f(g(x)) → a(c(x))
g(f(x)) → e(x)
a(x) → b(c(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
E(x) → F(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(b(x1)) = | | + | / | 0A | -I | 0A | \ |
| | 0A | 0A | 0A | | |
\ | 0A | -I | 0A | / |
| · | x1 |
POL(c(x1)) = | | + | / | 0A | 0A | 1A | \ |
| | 0A | 0A | 0A | | |
\ | 0A | -I | 0A | / |
| · | x1 |
POL(e(x1)) = | | + | / | 0A | -I | 0A | \ |
| | 0A | 0A | 0A | | |
\ | 0A | -I | 0A | / |
| · | x1 |
POL(g(x1)) = | | + | / | 1A | 0A | 1A | \ |
| | 0A | 0A | -I | | |
\ | 0A | -I | -I | / |
| · | x1 |
POL(f(x1)) = | | + | / | 0A | -I | 0A | \ |
| | 0A | 0A | -I | | |
\ | 0A | -I | 0A | / |
| · | x1 |
POL(d(x1)) = | | + | / | 1A | 0A | 1A | \ |
| | 0A | 0A | 0A | | |
\ | 0A | -I | 0A | / |
| · | x1 |
POL(a(x1)) = | | + | / | 0A | 0A | 1A | \ |
| | 0A | 0A | 1A | | |
\ | 0A | 0A | 1A | / |
| · | x1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
c(c(x)) → d(b(x))
d(x) → c(e(x))
c(b(x)) → g(x)
g(f(x)) → e(x)
e(x) → f(x)
f(g(x)) → a(c(x))
a(b(x)) → c(b(x))
a(x) → b(c(x))
b(b(x)) → f(x)
e(x) → b(b(x))
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
A(b(x)) → C(b(x))
C(c(x)) → D(b(x))
C(c(x)) → B(x)
D(x) → C(e(x))
D(x) → E(x)
B(b(x)) → F(x)
C(b(x)) → G(x)
E(x) → B(b(x))
E(x) → B(x)
F(g(x)) → A(c(x))
F(g(x)) → C(x)
G(f(x)) → E(x)
A(x) → B(c(x))
A(x) → C(x)
The TRS R consists of the following rules:
a(b(x)) → c(b(x))
c(c(x)) → d(b(x))
d(x) → c(e(x))
b(b(x)) → f(x)
c(b(x)) → g(x)
e(x) → f(x)
e(x) → b(b(x))
f(g(x)) → a(c(x))
g(f(x)) → e(x)
a(x) → b(c(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(5) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
F(g(x)) → C(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(b(x1)) = | | + | / | 0A | 0A | 0A | \ |
| | -I | 0A | 0A | | |
\ | -I | 0A | 0A | / |
| · | x1 |
POL(c(x1)) = | | + | / | 0A | 0A | 0A | \ |
| | 1A | 0A | 0A | | |
\ | -I | 0A | 0A | / |
| · | x1 |
POL(e(x1)) = | | + | / | 0A | 0A | 0A | \ |
| | -I | 0A | 0A | | |
\ | -I | 0A | 0A | / |
| · | x1 |
POL(g(x1)) = | | + | / | 0A | 0A | 0A | \ |
| | 1A | 1A | 1A | | |
\ | -I | 0A | 0A | / |
| · | x1 |
POL(f(x1)) = | | + | / | 0A | 0A | 0A | \ |
| | -I | 0A | 0A | | |
\ | -I | 0A | -I | / |
| · | x1 |
POL(d(x1)) = | | + | / | 0A | 0A | 0A | \ |
| | 1A | 1A | 1A | | |
\ | -I | 0A | 0A | / |
| · | x1 |
POL(a(x1)) = | | + | / | 1A | 0A | 0A | \ |
| | 1A | 0A | 0A | | |
\ | 1A | 0A | 0A | / |
| · | x1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
c(c(x)) → d(b(x))
d(x) → c(e(x))
c(b(x)) → g(x)
g(f(x)) → e(x)
e(x) → f(x)
f(g(x)) → a(c(x))
a(b(x)) → c(b(x))
a(x) → b(c(x))
b(b(x)) → f(x)
e(x) → b(b(x))
(6) Obligation:
Q DP problem:
The TRS P consists of the following rules:
A(b(x)) → C(b(x))
C(c(x)) → D(b(x))
C(c(x)) → B(x)
D(x) → C(e(x))
D(x) → E(x)
B(b(x)) → F(x)
C(b(x)) → G(x)
E(x) → B(b(x))
E(x) → B(x)
F(g(x)) → A(c(x))
G(f(x)) → E(x)
A(x) → B(c(x))
A(x) → C(x)
The TRS R consists of the following rules:
a(b(x)) → c(b(x))
c(c(x)) → d(b(x))
d(x) → c(e(x))
b(b(x)) → f(x)
c(b(x)) → g(x)
e(x) → f(x)
e(x) → b(b(x))
f(g(x)) → a(c(x))
g(f(x)) → e(x)
a(x) → b(c(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(7) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
F(g(x)) → A(c(x))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(b(x1)) = | | + | / | 0A | 0A | 0A | \ |
| | 0A | 0A | 0A | | |
\ | 0A | 0A | 0A | / |
| · | x1 |
POL(c(x1)) = | | + | / | 0A | 0A | -I | \ |
| | 0A | 0A | 0A | | |
\ | 0A | 1A | 0A | / |
| · | x1 |
POL(e(x1)) = | | + | / | 0A | 0A | 0A | \ |
| | 0A | 0A | 0A | | |
\ | 0A | 0A | 0A | / |
| · | x1 |
POL(g(x1)) = | | + | / | 0A | 0A | 0A | \ |
| | 0A | 0A | 0A | | |
\ | 1A | 1A | 1A | / |
| · | x1 |
POL(f(x1)) = | | + | / | -I | 0A | 0A | \ |
| | 0A | 0A | 0A | | |
\ | 0A | 0A | 0A | / |
| · | x1 |
POL(d(x1)) = | | + | / | 0A | 0A | 0A | \ |
| | 0A | 0A | 0A | | |
\ | 1A | 1A | 1A | / |
| · | x1 |
POL(a(x1)) = | | + | / | 0A | 1A | 0A | \ |
| | 0A | 1A | 0A | | |
\ | 0A | 1A | 0A | / |
| · | x1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
c(c(x)) → d(b(x))
d(x) → c(e(x))
c(b(x)) → g(x)
g(f(x)) → e(x)
e(x) → f(x)
f(g(x)) → a(c(x))
a(b(x)) → c(b(x))
a(x) → b(c(x))
b(b(x)) → f(x)
e(x) → b(b(x))
(8) Obligation:
Q DP problem:
The TRS P consists of the following rules:
A(b(x)) → C(b(x))
C(c(x)) → D(b(x))
C(c(x)) → B(x)
D(x) → C(e(x))
D(x) → E(x)
B(b(x)) → F(x)
C(b(x)) → G(x)
E(x) → B(b(x))
E(x) → B(x)
G(f(x)) → E(x)
A(x) → B(c(x))
A(x) → C(x)
The TRS R consists of the following rules:
a(b(x)) → c(b(x))
c(c(x)) → d(b(x))
d(x) → c(e(x))
b(b(x)) → f(x)
c(b(x)) → g(x)
e(x) → f(x)
e(x) → b(b(x))
f(g(x)) → a(c(x))
g(f(x)) → e(x)
a(x) → b(c(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(9) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 10 less nodes.
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
D(x) → C(e(x))
C(c(x)) → D(b(x))
The TRS R consists of the following rules:
a(b(x)) → c(b(x))
c(c(x)) → d(b(x))
d(x) → c(e(x))
b(b(x)) → f(x)
c(b(x)) → g(x)
e(x) → f(x)
e(x) → b(b(x))
f(g(x)) → a(c(x))
g(f(x)) → e(x)
a(x) → b(c(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(11) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
C(c(x)) → D(b(x))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(e(x1)) = | | + | / | -I | 0A | 0A | \ |
| | -I | 0A | 0A | | |
\ | -I | 0A | 0A | / |
| · | x1 |
POL(c(x1)) = | | + | / | -I | 1A | 0A | \ |
| | -I | 0A | 1A | | |
\ | -I | 0A | 0A | / |
| · | x1 |
POL(b(x1)) = | | + | / | -I | 0A | 0A | \ |
| | -I | 0A | 0A | | |
\ | -I | 0A | 0A | / |
| · | x1 |
POL(d(x1)) = | | + | / | 0A | 1A | 1A | \ |
| | 0A | 1A | 1A | | |
\ | -I | 0A | 0A | / |
| · | x1 |
POL(g(x1)) = | | + | / | -I | 0A | 1A | \ |
| | -I | 1A | 1A | | |
\ | -I | -I | 0A | / |
| · | x1 |
POL(f(x1)) = | | + | / | -I | 0A | 0A | \ |
| | -I | 0A | 0A | | |
\ | -I | 0A | 0A | / |
| · | x1 |
POL(a(x1)) = | | + | / | 0A | 0A | 1A | \ |
| | 0A | 0A | 1A | | |
\ | 0A | 0A | 1A | / |
| · | x1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
c(c(x)) → d(b(x))
d(x) → c(e(x))
c(b(x)) → g(x)
g(f(x)) → e(x)
e(x) → f(x)
f(g(x)) → a(c(x))
a(b(x)) → c(b(x))
a(x) → b(c(x))
b(b(x)) → f(x)
e(x) → b(b(x))
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
D(x) → C(e(x))
The TRS R consists of the following rules:
a(b(x)) → c(b(x))
c(c(x)) → d(b(x))
d(x) → c(e(x))
b(b(x)) → f(x)
c(b(x)) → g(x)
e(x) → f(x)
e(x) → b(b(x))
f(g(x)) → a(c(x))
g(f(x)) → e(x)
a(x) → b(c(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(13) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(14) TRUE