YES
Termination Proof
Termination Proof
by ttt2 (version ttt2 1.15)
Input
The rewrite relation of the following TRS is considered.
a(b(c(x0))) |
→ |
b(x0) |
c(b(b(x0))) |
→ |
a(x0) |
c(x0) |
→ |
b(x0) |
a(a(x0)) |
→ |
c(b(a(c(x0)))) |
Proof
1 Rule Removal
Using the
linear polynomial interpretation over the arctic semiring over the integers
[b(x1)] |
= |
2 ·
x1 +
-∞
|
[c(x1)] |
= |
2 ·
x1 +
-∞
|
[a(x1)] |
= |
6 ·
x1 +
-∞
|
the
rules
c(b(b(x0))) |
→ |
a(x0) |
c(x0) |
→ |
b(x0) |
a(a(x0)) |
→ |
c(b(a(c(x0)))) |
remain.
1.1 Dependency Pair Transformation
The following set of initial dependency pairs has been identified.
c#(b(b(x0))) |
→ |
a#(x0) |
a#(a(x0)) |
→ |
c#(x0) |
a#(a(x0)) |
→ |
a#(c(x0)) |
a#(a(x0)) |
→ |
c#(b(a(c(x0)))) |
1.1.1 Reduction Pair Processor with Usable Rules
Using the linear polynomial interpretation over the arctic semiring over the integers
[a#(x1)] |
= |
5 ·
x1 +
-∞
|
[b(x1)] |
= |
1 ·
x1 + 2 |
[c#(x1)] |
= |
3 ·
x1 + 8 |
[c(x1)] |
= |
1 ·
x1 + 2 |
[a(x1)] |
= |
3 ·
x1 + 4 |
together with the usable
rules
c(b(b(x0))) |
→ |
a(x0) |
c(x0) |
→ |
b(x0) |
a(a(x0)) |
→ |
c(b(a(c(x0)))) |
(w.r.t. the implicit argument filter of the reduction pair),
the
pairs
c#(b(b(x0))) |
→ |
a#(x0) |
a#(a(x0)) |
→ |
c#(b(a(c(x0)))) |
remain.
1.1.1.1 Dependency Graph Processor
The dependency pairs are split into 0
components.