(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
a(c(x)) → a(x)
d(a(x)) → a(c(b(c(d(x)))))
a(c(b(c(x)))) → c(b(c(c(x))))
c(x) → b(a(a(x)))
d(c(x)) → a(c(d(a(x))))
Q is empty.
(1) QTRS Reverse (EQUIVALENT transformation)
We applied the QTRS Reverse Processor [REVERSE].
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
c(a(x)) → a(x)
a(d(x)) → d(c(b(c(a(x)))))
c(b(c(a(x)))) → c(c(b(c(x))))
c(x) → a(a(b(x)))
c(d(x)) → a(d(c(a(x))))
Q is empty.
(3) FlatCCProof (EQUIVALENT transformation)
We used flat context closure [ROOTLAB]
As Q is empty the flat context closure was sound AND complete.
(4) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
c(b(c(a(x)))) → c(c(b(c(x))))
c(c(a(x))) → c(a(x))
a(c(a(x))) → a(a(x))
d(c(a(x))) → d(a(x))
b(c(a(x))) → b(a(x))
c(a(d(x))) → c(d(c(b(c(a(x))))))
a(a(d(x))) → a(d(c(b(c(a(x))))))
d(a(d(x))) → d(d(c(b(c(a(x))))))
b(a(d(x))) → b(d(c(b(c(a(x))))))
c(c(x)) → c(a(a(b(x))))
a(c(x)) → a(a(a(b(x))))
d(c(x)) → d(a(a(b(x))))
b(c(x)) → b(a(a(b(x))))
c(c(d(x))) → c(a(d(c(a(x)))))
a(c(d(x))) → a(a(d(c(a(x)))))
d(c(d(x))) → d(a(d(c(a(x)))))
b(c(d(x))) → b(a(d(c(a(x)))))
Q is empty.
(5) RootLabelingProof (EQUIVALENT transformation)
We used plain root labeling [ROOTLAB] with the following heuristic:
LabelAll: All function symbols get labeled
As Q is empty the root labeling was sound AND complete.
(6) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{c_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{b_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{b_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{d_1}(x))))
c_{c_1}(c_{a_1}(a_{c_1}(x))) → c_{a_1}(a_{c_1}(x))
c_{c_1}(c_{a_1}(a_{b_1}(x))) → c_{a_1}(a_{b_1}(x))
c_{c_1}(c_{a_1}(a_{a_1}(x))) → c_{a_1}(a_{a_1}(x))
c_{c_1}(c_{a_1}(a_{d_1}(x))) → c_{a_1}(a_{d_1}(x))
a_{c_1}(c_{a_1}(a_{c_1}(x))) → a_{a_1}(a_{c_1}(x))
a_{c_1}(c_{a_1}(a_{b_1}(x))) → a_{a_1}(a_{b_1}(x))
a_{c_1}(c_{a_1}(a_{a_1}(x))) → a_{a_1}(a_{a_1}(x))
a_{c_1}(c_{a_1}(a_{d_1}(x))) → a_{a_1}(a_{d_1}(x))
d_{c_1}(c_{a_1}(a_{c_1}(x))) → d_{a_1}(a_{c_1}(x))
d_{c_1}(c_{a_1}(a_{b_1}(x))) → d_{a_1}(a_{b_1}(x))
d_{c_1}(c_{a_1}(a_{a_1}(x))) → d_{a_1}(a_{a_1}(x))
d_{c_1}(c_{a_1}(a_{d_1}(x))) → d_{a_1}(a_{d_1}(x))
b_{c_1}(c_{a_1}(a_{c_1}(x))) → b_{a_1}(a_{c_1}(x))
b_{c_1}(c_{a_1}(a_{b_1}(x))) → b_{a_1}(a_{b_1}(x))
b_{c_1}(c_{a_1}(a_{a_1}(x))) → b_{a_1}(a_{a_1}(x))
b_{c_1}(c_{a_1}(a_{d_1}(x))) → b_{a_1}(a_{d_1}(x))
c_{a_1}(a_{d_1}(d_{c_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))))
c_{a_1}(a_{d_1}(d_{b_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{b_1}(x))))))
c_{a_1}(a_{d_1}(d_{a_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))))
c_{a_1}(a_{d_1}(d_{d_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))))
a_{a_1}(a_{d_1}(d_{c_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))))
a_{a_1}(a_{d_1}(d_{b_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{b_1}(x))))))
a_{a_1}(a_{d_1}(d_{a_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))))
a_{a_1}(a_{d_1}(d_{d_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))))
d_{a_1}(a_{d_1}(d_{c_1}(x))) → d_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))))
d_{a_1}(a_{d_1}(d_{b_1}(x))) → d_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{b_1}(x))))))
d_{a_1}(a_{d_1}(d_{a_1}(x))) → d_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))))
d_{a_1}(a_{d_1}(d_{d_1}(x))) → d_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))))
b_{a_1}(a_{d_1}(d_{c_1}(x))) → b_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))))
b_{a_1}(a_{d_1}(d_{b_1}(x))) → b_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{b_1}(x))))))
b_{a_1}(a_{d_1}(d_{a_1}(x))) → b_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))))
b_{a_1}(a_{d_1}(d_{d_1}(x))) → b_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))))
c_{c_1}(c_{c_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
c_{c_1}(c_{b_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
c_{c_1}(c_{a_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
c_{c_1}(c_{d_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{d_1}(x))))
a_{c_1}(c_{c_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
a_{c_1}(c_{b_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
a_{c_1}(c_{a_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
a_{c_1}(c_{d_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{d_1}(x))))
d_{c_1}(c_{c_1}(x)) → d_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
d_{c_1}(c_{b_1}(x)) → d_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
d_{c_1}(c_{a_1}(x)) → d_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
d_{c_1}(c_{d_1}(x)) → d_{a_1}(a_{a_1}(a_{b_1}(b_{d_1}(x))))
b_{c_1}(c_{c_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
b_{c_1}(c_{b_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
b_{c_1}(c_{a_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
b_{c_1}(c_{d_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{d_1}(x))))
c_{c_1}(c_{d_1}(d_{c_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
c_{c_1}(c_{d_1}(d_{b_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{b_1}(x)))))
c_{c_1}(c_{d_1}(d_{a_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
c_{c_1}(c_{d_1}(d_{d_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
a_{c_1}(c_{d_1}(d_{c_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
a_{c_1}(c_{d_1}(d_{b_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{b_1}(x)))))
a_{c_1}(c_{d_1}(d_{a_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
a_{c_1}(c_{d_1}(d_{d_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
d_{c_1}(c_{d_1}(d_{c_1}(x))) → d_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
d_{c_1}(c_{d_1}(d_{b_1}(x))) → d_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{b_1}(x)))))
d_{c_1}(c_{d_1}(d_{a_1}(x))) → d_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
d_{c_1}(c_{d_1}(d_{d_1}(x))) → d_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
b_{c_1}(c_{d_1}(d_{c_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
b_{c_1}(c_{d_1}(d_{b_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{b_1}(x)))))
b_{c_1}(c_{d_1}(d_{a_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
b_{c_1}(c_{d_1}(d_{d_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
Q is empty.
(7) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Polynomial interpretation [POLO]:
POL(a_{a_1}(x1)) = x1
POL(a_{b_1}(x1)) = x1
POL(a_{c_1}(x1)) = x1
POL(a_{d_1}(x1)) = 1 + x1
POL(b_{a_1}(x1)) = x1
POL(b_{b_1}(x1)) = x1
POL(b_{c_1}(x1)) = x1
POL(b_{d_1}(x1)) = x1
POL(c_{a_1}(x1)) = x1
POL(c_{b_1}(x1)) = x1
POL(c_{c_1}(x1)) = x1
POL(c_{d_1}(x1)) = 1 + x1
POL(d_{a_1}(x1)) = x1
POL(d_{b_1}(x1)) = 1 + x1
POL(d_{c_1}(x1)) = x1
POL(d_{d_1}(x1)) = 1 + x1
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
c_{a_1}(a_{d_1}(d_{b_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{b_1}(x))))))
a_{a_1}(a_{d_1}(d_{b_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{b_1}(x))))))
d_{a_1}(a_{d_1}(d_{b_1}(x))) → d_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{b_1}(x))))))
b_{a_1}(a_{d_1}(d_{c_1}(x))) → b_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))))
b_{a_1}(a_{d_1}(d_{b_1}(x))) → b_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{b_1}(x))))))
b_{a_1}(a_{d_1}(d_{a_1}(x))) → b_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))))
b_{a_1}(a_{d_1}(d_{d_1}(x))) → b_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))))
c_{c_1}(c_{d_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{d_1}(x))))
a_{c_1}(c_{d_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{d_1}(x))))
d_{c_1}(c_{d_1}(x)) → d_{a_1}(a_{a_1}(a_{b_1}(b_{d_1}(x))))
b_{c_1}(c_{d_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{d_1}(x))))
c_{c_1}(c_{d_1}(d_{b_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{b_1}(x)))))
a_{c_1}(c_{d_1}(d_{b_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{b_1}(x)))))
d_{c_1}(c_{d_1}(d_{b_1}(x))) → d_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{b_1}(x)))))
b_{c_1}(c_{d_1}(d_{b_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{b_1}(x)))))
(8) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{c_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{b_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{b_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{d_1}(x))))
c_{c_1}(c_{a_1}(a_{c_1}(x))) → c_{a_1}(a_{c_1}(x))
c_{c_1}(c_{a_1}(a_{b_1}(x))) → c_{a_1}(a_{b_1}(x))
c_{c_1}(c_{a_1}(a_{a_1}(x))) → c_{a_1}(a_{a_1}(x))
c_{c_1}(c_{a_1}(a_{d_1}(x))) → c_{a_1}(a_{d_1}(x))
a_{c_1}(c_{a_1}(a_{c_1}(x))) → a_{a_1}(a_{c_1}(x))
a_{c_1}(c_{a_1}(a_{b_1}(x))) → a_{a_1}(a_{b_1}(x))
a_{c_1}(c_{a_1}(a_{a_1}(x))) → a_{a_1}(a_{a_1}(x))
a_{c_1}(c_{a_1}(a_{d_1}(x))) → a_{a_1}(a_{d_1}(x))
d_{c_1}(c_{a_1}(a_{c_1}(x))) → d_{a_1}(a_{c_1}(x))
d_{c_1}(c_{a_1}(a_{b_1}(x))) → d_{a_1}(a_{b_1}(x))
d_{c_1}(c_{a_1}(a_{a_1}(x))) → d_{a_1}(a_{a_1}(x))
d_{c_1}(c_{a_1}(a_{d_1}(x))) → d_{a_1}(a_{d_1}(x))
b_{c_1}(c_{a_1}(a_{c_1}(x))) → b_{a_1}(a_{c_1}(x))
b_{c_1}(c_{a_1}(a_{b_1}(x))) → b_{a_1}(a_{b_1}(x))
b_{c_1}(c_{a_1}(a_{a_1}(x))) → b_{a_1}(a_{a_1}(x))
b_{c_1}(c_{a_1}(a_{d_1}(x))) → b_{a_1}(a_{d_1}(x))
c_{a_1}(a_{d_1}(d_{c_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))))
c_{a_1}(a_{d_1}(d_{a_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))))
c_{a_1}(a_{d_1}(d_{d_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))))
a_{a_1}(a_{d_1}(d_{c_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))))
a_{a_1}(a_{d_1}(d_{a_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))))
a_{a_1}(a_{d_1}(d_{d_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))))
d_{a_1}(a_{d_1}(d_{c_1}(x))) → d_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))))
d_{a_1}(a_{d_1}(d_{a_1}(x))) → d_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))))
d_{a_1}(a_{d_1}(d_{d_1}(x))) → d_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))))
c_{c_1}(c_{c_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
c_{c_1}(c_{b_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
c_{c_1}(c_{a_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
a_{c_1}(c_{c_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
a_{c_1}(c_{b_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
a_{c_1}(c_{a_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
d_{c_1}(c_{c_1}(x)) → d_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
d_{c_1}(c_{b_1}(x)) → d_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
d_{c_1}(c_{a_1}(x)) → d_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
b_{c_1}(c_{c_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
b_{c_1}(c_{b_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
b_{c_1}(c_{a_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
c_{c_1}(c_{d_1}(d_{c_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
c_{c_1}(c_{d_1}(d_{a_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
c_{c_1}(c_{d_1}(d_{d_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
a_{c_1}(c_{d_1}(d_{c_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
a_{c_1}(c_{d_1}(d_{a_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
a_{c_1}(c_{d_1}(d_{d_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
d_{c_1}(c_{d_1}(d_{c_1}(x))) → d_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
d_{c_1}(c_{d_1}(d_{a_1}(x))) → d_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
d_{c_1}(c_{d_1}(d_{d_1}(x))) → d_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
b_{c_1}(c_{d_1}(d_{c_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
b_{c_1}(c_{d_1}(d_{a_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
b_{c_1}(c_{d_1}(d_{d_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
Q is empty.
(9) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
C_{B_1}(b_{c_1}(c_{a_1}(a_{c_1}(x)))) → C_{C_1}(c_{b_1}(b_{c_1}(c_{c_1}(x))))
C_{B_1}(b_{c_1}(c_{a_1}(a_{c_1}(x)))) → C_{B_1}(b_{c_1}(c_{c_1}(x)))
C_{B_1}(b_{c_1}(c_{a_1}(a_{c_1}(x)))) → B_{C_1}(c_{c_1}(x))
C_{B_1}(b_{c_1}(c_{a_1}(a_{c_1}(x)))) → C_{C_1}(x)
C_{B_1}(b_{c_1}(c_{a_1}(a_{b_1}(x)))) → C_{C_1}(c_{b_1}(b_{c_1}(c_{b_1}(x))))
C_{B_1}(b_{c_1}(c_{a_1}(a_{b_1}(x)))) → C_{B_1}(b_{c_1}(c_{b_1}(x)))
C_{B_1}(b_{c_1}(c_{a_1}(a_{b_1}(x)))) → B_{C_1}(c_{b_1}(x))
C_{B_1}(b_{c_1}(c_{a_1}(a_{b_1}(x)))) → C_{B_1}(x)
C_{B_1}(b_{c_1}(c_{a_1}(a_{a_1}(x)))) → C_{C_1}(c_{b_1}(b_{c_1}(c_{a_1}(x))))
C_{B_1}(b_{c_1}(c_{a_1}(a_{a_1}(x)))) → C_{B_1}(b_{c_1}(c_{a_1}(x)))
C_{B_1}(b_{c_1}(c_{a_1}(a_{a_1}(x)))) → B_{C_1}(c_{a_1}(x))
C_{B_1}(b_{c_1}(c_{a_1}(a_{a_1}(x)))) → C_{A_1}(x)
C_{B_1}(b_{c_1}(c_{a_1}(a_{d_1}(x)))) → C_{C_1}(c_{b_1}(b_{c_1}(c_{d_1}(x))))
C_{B_1}(b_{c_1}(c_{a_1}(a_{d_1}(x)))) → C_{B_1}(b_{c_1}(c_{d_1}(x)))
C_{B_1}(b_{c_1}(c_{a_1}(a_{d_1}(x)))) → B_{C_1}(c_{d_1}(x))
A_{C_1}(c_{a_1}(a_{c_1}(x))) → A_{A_1}(a_{c_1}(x))
A_{C_1}(c_{a_1}(a_{b_1}(x))) → A_{A_1}(a_{b_1}(x))
A_{C_1}(c_{a_1}(a_{a_1}(x))) → A_{A_1}(a_{a_1}(x))
A_{C_1}(c_{a_1}(a_{d_1}(x))) → A_{A_1}(a_{d_1}(x))
D_{C_1}(c_{a_1}(a_{c_1}(x))) → D_{A_1}(a_{c_1}(x))
D_{C_1}(c_{a_1}(a_{b_1}(x))) → D_{A_1}(a_{b_1}(x))
D_{C_1}(c_{a_1}(a_{a_1}(x))) → D_{A_1}(a_{a_1}(x))
D_{C_1}(c_{a_1}(a_{d_1}(x))) → D_{A_1}(a_{d_1}(x))
C_{A_1}(a_{d_1}(d_{c_1}(x))) → D_{C_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x)))))
C_{A_1}(a_{d_1}(d_{c_1}(x))) → C_{B_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))
C_{A_1}(a_{d_1}(d_{c_1}(x))) → B_{C_1}(c_{a_1}(a_{c_1}(x)))
C_{A_1}(a_{d_1}(d_{c_1}(x))) → C_{A_1}(a_{c_1}(x))
C_{A_1}(a_{d_1}(d_{c_1}(x))) → A_{C_1}(x)
C_{A_1}(a_{d_1}(d_{a_1}(x))) → D_{C_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x)))))
C_{A_1}(a_{d_1}(d_{a_1}(x))) → C_{B_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))
C_{A_1}(a_{d_1}(d_{a_1}(x))) → B_{C_1}(c_{a_1}(a_{a_1}(x)))
C_{A_1}(a_{d_1}(d_{a_1}(x))) → C_{A_1}(a_{a_1}(x))
C_{A_1}(a_{d_1}(d_{a_1}(x))) → A_{A_1}(x)
C_{A_1}(a_{d_1}(d_{d_1}(x))) → D_{C_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x)))))
C_{A_1}(a_{d_1}(d_{d_1}(x))) → C_{B_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))
C_{A_1}(a_{d_1}(d_{d_1}(x))) → B_{C_1}(c_{a_1}(a_{d_1}(x)))
C_{A_1}(a_{d_1}(d_{d_1}(x))) → C_{A_1}(a_{d_1}(x))
A_{A_1}(a_{d_1}(d_{c_1}(x))) → D_{C_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x)))))
A_{A_1}(a_{d_1}(d_{c_1}(x))) → C_{B_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))
A_{A_1}(a_{d_1}(d_{c_1}(x))) → B_{C_1}(c_{a_1}(a_{c_1}(x)))
A_{A_1}(a_{d_1}(d_{c_1}(x))) → C_{A_1}(a_{c_1}(x))
A_{A_1}(a_{d_1}(d_{c_1}(x))) → A_{C_1}(x)
A_{A_1}(a_{d_1}(d_{a_1}(x))) → D_{C_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x)))))
A_{A_1}(a_{d_1}(d_{a_1}(x))) → C_{B_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))
A_{A_1}(a_{d_1}(d_{a_1}(x))) → B_{C_1}(c_{a_1}(a_{a_1}(x)))
A_{A_1}(a_{d_1}(d_{a_1}(x))) → C_{A_1}(a_{a_1}(x))
A_{A_1}(a_{d_1}(d_{a_1}(x))) → A_{A_1}(x)
A_{A_1}(a_{d_1}(d_{d_1}(x))) → D_{C_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x)))))
A_{A_1}(a_{d_1}(d_{d_1}(x))) → C_{B_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))
A_{A_1}(a_{d_1}(d_{d_1}(x))) → B_{C_1}(c_{a_1}(a_{d_1}(x)))
A_{A_1}(a_{d_1}(d_{d_1}(x))) → C_{A_1}(a_{d_1}(x))
D_{A_1}(a_{d_1}(d_{c_1}(x))) → D_{C_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x)))))
D_{A_1}(a_{d_1}(d_{c_1}(x))) → C_{B_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))
D_{A_1}(a_{d_1}(d_{c_1}(x))) → B_{C_1}(c_{a_1}(a_{c_1}(x)))
D_{A_1}(a_{d_1}(d_{c_1}(x))) → C_{A_1}(a_{c_1}(x))
D_{A_1}(a_{d_1}(d_{c_1}(x))) → A_{C_1}(x)
D_{A_1}(a_{d_1}(d_{a_1}(x))) → D_{C_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x)))))
D_{A_1}(a_{d_1}(d_{a_1}(x))) → C_{B_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))
D_{A_1}(a_{d_1}(d_{a_1}(x))) → B_{C_1}(c_{a_1}(a_{a_1}(x)))
D_{A_1}(a_{d_1}(d_{a_1}(x))) → C_{A_1}(a_{a_1}(x))
D_{A_1}(a_{d_1}(d_{a_1}(x))) → A_{A_1}(x)
D_{A_1}(a_{d_1}(d_{d_1}(x))) → D_{C_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x)))))
D_{A_1}(a_{d_1}(d_{d_1}(x))) → C_{B_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))
D_{A_1}(a_{d_1}(d_{d_1}(x))) → B_{C_1}(c_{a_1}(a_{d_1}(x)))
D_{A_1}(a_{d_1}(d_{d_1}(x))) → C_{A_1}(a_{d_1}(x))
C_{C_1}(c_{c_1}(x)) → C_{A_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
C_{C_1}(c_{c_1}(x)) → A_{A_1}(a_{b_1}(b_{c_1}(x)))
C_{C_1}(c_{c_1}(x)) → B_{C_1}(x)
C_{C_1}(c_{b_1}(x)) → C_{A_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
C_{C_1}(c_{b_1}(x)) → A_{A_1}(a_{b_1}(b_{b_1}(x)))
C_{C_1}(c_{a_1}(x)) → C_{A_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
C_{C_1}(c_{a_1}(x)) → A_{A_1}(a_{b_1}(b_{a_1}(x)))
A_{C_1}(c_{c_1}(x)) → A_{A_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
A_{C_1}(c_{c_1}(x)) → A_{A_1}(a_{b_1}(b_{c_1}(x)))
A_{C_1}(c_{c_1}(x)) → B_{C_1}(x)
A_{C_1}(c_{b_1}(x)) → A_{A_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
A_{C_1}(c_{b_1}(x)) → A_{A_1}(a_{b_1}(b_{b_1}(x)))
A_{C_1}(c_{a_1}(x)) → A_{A_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
A_{C_1}(c_{a_1}(x)) → A_{A_1}(a_{b_1}(b_{a_1}(x)))
D_{C_1}(c_{c_1}(x)) → D_{A_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
D_{C_1}(c_{c_1}(x)) → A_{A_1}(a_{b_1}(b_{c_1}(x)))
D_{C_1}(c_{c_1}(x)) → B_{C_1}(x)
D_{C_1}(c_{b_1}(x)) → D_{A_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
D_{C_1}(c_{b_1}(x)) → A_{A_1}(a_{b_1}(b_{b_1}(x)))
D_{C_1}(c_{a_1}(x)) → D_{A_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
D_{C_1}(c_{a_1}(x)) → A_{A_1}(a_{b_1}(b_{a_1}(x)))
B_{C_1}(c_{c_1}(x)) → A_{A_1}(a_{b_1}(b_{c_1}(x)))
B_{C_1}(c_{c_1}(x)) → B_{C_1}(x)
B_{C_1}(c_{b_1}(x)) → A_{A_1}(a_{b_1}(b_{b_1}(x)))
B_{C_1}(c_{a_1}(x)) → A_{A_1}(a_{b_1}(b_{a_1}(x)))
C_{C_1}(c_{d_1}(d_{c_1}(x))) → C_{A_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
C_{C_1}(c_{d_1}(d_{c_1}(x))) → D_{C_1}(c_{a_1}(a_{c_1}(x)))
C_{C_1}(c_{d_1}(d_{c_1}(x))) → C_{A_1}(a_{c_1}(x))
C_{C_1}(c_{d_1}(d_{c_1}(x))) → A_{C_1}(x)
C_{C_1}(c_{d_1}(d_{a_1}(x))) → C_{A_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
C_{C_1}(c_{d_1}(d_{a_1}(x))) → D_{C_1}(c_{a_1}(a_{a_1}(x)))
C_{C_1}(c_{d_1}(d_{a_1}(x))) → C_{A_1}(a_{a_1}(x))
C_{C_1}(c_{d_1}(d_{a_1}(x))) → A_{A_1}(x)
C_{C_1}(c_{d_1}(d_{d_1}(x))) → C_{A_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
C_{C_1}(c_{d_1}(d_{d_1}(x))) → D_{C_1}(c_{a_1}(a_{d_1}(x)))
C_{C_1}(c_{d_1}(d_{d_1}(x))) → C_{A_1}(a_{d_1}(x))
A_{C_1}(c_{d_1}(d_{c_1}(x))) → A_{A_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
A_{C_1}(c_{d_1}(d_{c_1}(x))) → D_{C_1}(c_{a_1}(a_{c_1}(x)))
A_{C_1}(c_{d_1}(d_{c_1}(x))) → C_{A_1}(a_{c_1}(x))
A_{C_1}(c_{d_1}(d_{c_1}(x))) → A_{C_1}(x)
A_{C_1}(c_{d_1}(d_{a_1}(x))) → A_{A_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
A_{C_1}(c_{d_1}(d_{a_1}(x))) → D_{C_1}(c_{a_1}(a_{a_1}(x)))
A_{C_1}(c_{d_1}(d_{a_1}(x))) → C_{A_1}(a_{a_1}(x))
A_{C_1}(c_{d_1}(d_{a_1}(x))) → A_{A_1}(x)
A_{C_1}(c_{d_1}(d_{d_1}(x))) → A_{A_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
A_{C_1}(c_{d_1}(d_{d_1}(x))) → D_{C_1}(c_{a_1}(a_{d_1}(x)))
A_{C_1}(c_{d_1}(d_{d_1}(x))) → C_{A_1}(a_{d_1}(x))
D_{C_1}(c_{d_1}(d_{c_1}(x))) → D_{A_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
D_{C_1}(c_{d_1}(d_{c_1}(x))) → D_{C_1}(c_{a_1}(a_{c_1}(x)))
D_{C_1}(c_{d_1}(d_{c_1}(x))) → C_{A_1}(a_{c_1}(x))
D_{C_1}(c_{d_1}(d_{c_1}(x))) → A_{C_1}(x)
D_{C_1}(c_{d_1}(d_{a_1}(x))) → D_{A_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
D_{C_1}(c_{d_1}(d_{a_1}(x))) → D_{C_1}(c_{a_1}(a_{a_1}(x)))
D_{C_1}(c_{d_1}(d_{a_1}(x))) → C_{A_1}(a_{a_1}(x))
D_{C_1}(c_{d_1}(d_{a_1}(x))) → A_{A_1}(x)
D_{C_1}(c_{d_1}(d_{d_1}(x))) → D_{A_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
D_{C_1}(c_{d_1}(d_{d_1}(x))) → D_{C_1}(c_{a_1}(a_{d_1}(x)))
D_{C_1}(c_{d_1}(d_{d_1}(x))) → C_{A_1}(a_{d_1}(x))
B_{C_1}(c_{d_1}(d_{c_1}(x))) → D_{C_1}(c_{a_1}(a_{c_1}(x)))
B_{C_1}(c_{d_1}(d_{c_1}(x))) → C_{A_1}(a_{c_1}(x))
B_{C_1}(c_{d_1}(d_{c_1}(x))) → A_{C_1}(x)
B_{C_1}(c_{d_1}(d_{a_1}(x))) → D_{C_1}(c_{a_1}(a_{a_1}(x)))
B_{C_1}(c_{d_1}(d_{a_1}(x))) → C_{A_1}(a_{a_1}(x))
B_{C_1}(c_{d_1}(d_{a_1}(x))) → A_{A_1}(x)
B_{C_1}(c_{d_1}(d_{d_1}(x))) → D_{C_1}(c_{a_1}(a_{d_1}(x)))
B_{C_1}(c_{d_1}(d_{d_1}(x))) → C_{A_1}(a_{d_1}(x))
The TRS R consists of the following rules:
c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{c_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{b_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{b_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{d_1}(x))))
c_{c_1}(c_{a_1}(a_{c_1}(x))) → c_{a_1}(a_{c_1}(x))
c_{c_1}(c_{a_1}(a_{b_1}(x))) → c_{a_1}(a_{b_1}(x))
c_{c_1}(c_{a_1}(a_{a_1}(x))) → c_{a_1}(a_{a_1}(x))
c_{c_1}(c_{a_1}(a_{d_1}(x))) → c_{a_1}(a_{d_1}(x))
a_{c_1}(c_{a_1}(a_{c_1}(x))) → a_{a_1}(a_{c_1}(x))
a_{c_1}(c_{a_1}(a_{b_1}(x))) → a_{a_1}(a_{b_1}(x))
a_{c_1}(c_{a_1}(a_{a_1}(x))) → a_{a_1}(a_{a_1}(x))
a_{c_1}(c_{a_1}(a_{d_1}(x))) → a_{a_1}(a_{d_1}(x))
d_{c_1}(c_{a_1}(a_{c_1}(x))) → d_{a_1}(a_{c_1}(x))
d_{c_1}(c_{a_1}(a_{b_1}(x))) → d_{a_1}(a_{b_1}(x))
d_{c_1}(c_{a_1}(a_{a_1}(x))) → d_{a_1}(a_{a_1}(x))
d_{c_1}(c_{a_1}(a_{d_1}(x))) → d_{a_1}(a_{d_1}(x))
b_{c_1}(c_{a_1}(a_{c_1}(x))) → b_{a_1}(a_{c_1}(x))
b_{c_1}(c_{a_1}(a_{b_1}(x))) → b_{a_1}(a_{b_1}(x))
b_{c_1}(c_{a_1}(a_{a_1}(x))) → b_{a_1}(a_{a_1}(x))
b_{c_1}(c_{a_1}(a_{d_1}(x))) → b_{a_1}(a_{d_1}(x))
c_{a_1}(a_{d_1}(d_{c_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))))
c_{a_1}(a_{d_1}(d_{a_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))))
c_{a_1}(a_{d_1}(d_{d_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))))
a_{a_1}(a_{d_1}(d_{c_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))))
a_{a_1}(a_{d_1}(d_{a_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))))
a_{a_1}(a_{d_1}(d_{d_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))))
d_{a_1}(a_{d_1}(d_{c_1}(x))) → d_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))))
d_{a_1}(a_{d_1}(d_{a_1}(x))) → d_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))))
d_{a_1}(a_{d_1}(d_{d_1}(x))) → d_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))))
c_{c_1}(c_{c_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
c_{c_1}(c_{b_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
c_{c_1}(c_{a_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
a_{c_1}(c_{c_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
a_{c_1}(c_{b_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
a_{c_1}(c_{a_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
d_{c_1}(c_{c_1}(x)) → d_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
d_{c_1}(c_{b_1}(x)) → d_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
d_{c_1}(c_{a_1}(x)) → d_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
b_{c_1}(c_{c_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
b_{c_1}(c_{b_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
b_{c_1}(c_{a_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
c_{c_1}(c_{d_1}(d_{c_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
c_{c_1}(c_{d_1}(d_{a_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
c_{c_1}(c_{d_1}(d_{d_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
a_{c_1}(c_{d_1}(d_{c_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
a_{c_1}(c_{d_1}(d_{a_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
a_{c_1}(c_{d_1}(d_{d_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
d_{c_1}(c_{d_1}(d_{c_1}(x))) → d_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
d_{c_1}(c_{d_1}(d_{a_1}(x))) → d_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
d_{c_1}(c_{d_1}(d_{d_1}(x))) → d_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
b_{c_1}(c_{d_1}(d_{c_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
b_{c_1}(c_{d_1}(d_{a_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
b_{c_1}(c_{d_1}(d_{d_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(11) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 23 less nodes.
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
C_{C_1}(c_{c_1}(x)) → B_{C_1}(x)
B_{C_1}(c_{c_1}(x)) → B_{C_1}(x)
B_{C_1}(c_{d_1}(d_{c_1}(x))) → D_{C_1}(c_{a_1}(a_{c_1}(x)))
D_{C_1}(c_{a_1}(a_{c_1}(x))) → D_{A_1}(a_{c_1}(x))
D_{A_1}(a_{d_1}(d_{c_1}(x))) → D_{C_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x)))))
D_{C_1}(c_{a_1}(a_{a_1}(x))) → D_{A_1}(a_{a_1}(x))
D_{A_1}(a_{d_1}(d_{c_1}(x))) → C_{B_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))
C_{B_1}(b_{c_1}(c_{a_1}(a_{c_1}(x)))) → C_{C_1}(c_{b_1}(b_{c_1}(c_{c_1}(x))))
C_{C_1}(c_{d_1}(d_{c_1}(x))) → C_{A_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
C_{A_1}(a_{d_1}(d_{c_1}(x))) → D_{C_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x)))))
D_{C_1}(c_{a_1}(a_{d_1}(x))) → D_{A_1}(a_{d_1}(x))
D_{A_1}(a_{d_1}(d_{c_1}(x))) → B_{C_1}(c_{a_1}(a_{c_1}(x)))
B_{C_1}(c_{d_1}(d_{c_1}(x))) → C_{A_1}(a_{c_1}(x))
C_{A_1}(a_{d_1}(d_{c_1}(x))) → C_{B_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))
C_{B_1}(b_{c_1}(c_{a_1}(a_{c_1}(x)))) → C_{B_1}(b_{c_1}(c_{c_1}(x)))
C_{B_1}(b_{c_1}(c_{a_1}(a_{c_1}(x)))) → B_{C_1}(c_{c_1}(x))
B_{C_1}(c_{d_1}(d_{c_1}(x))) → A_{C_1}(x)
A_{C_1}(c_{a_1}(a_{c_1}(x))) → A_{A_1}(a_{c_1}(x))
A_{A_1}(a_{d_1}(d_{c_1}(x))) → D_{C_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x)))))
D_{C_1}(c_{c_1}(x)) → B_{C_1}(x)
B_{C_1}(c_{d_1}(d_{a_1}(x))) → D_{C_1}(c_{a_1}(a_{a_1}(x)))
D_{C_1}(c_{d_1}(d_{c_1}(x))) → D_{A_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
D_{A_1}(a_{d_1}(d_{c_1}(x))) → C_{A_1}(a_{c_1}(x))
C_{A_1}(a_{d_1}(d_{c_1}(x))) → B_{C_1}(c_{a_1}(a_{c_1}(x)))
B_{C_1}(c_{d_1}(d_{a_1}(x))) → C_{A_1}(a_{a_1}(x))
C_{A_1}(a_{d_1}(d_{c_1}(x))) → C_{A_1}(a_{c_1}(x))
C_{A_1}(a_{d_1}(d_{c_1}(x))) → A_{C_1}(x)
A_{C_1}(c_{a_1}(a_{a_1}(x))) → A_{A_1}(a_{a_1}(x))
A_{A_1}(a_{d_1}(d_{c_1}(x))) → C_{B_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))
C_{B_1}(b_{c_1}(c_{a_1}(a_{c_1}(x)))) → C_{C_1}(x)
C_{C_1}(c_{d_1}(d_{c_1}(x))) → D_{C_1}(c_{a_1}(a_{c_1}(x)))
D_{C_1}(c_{d_1}(d_{c_1}(x))) → D_{C_1}(c_{a_1}(a_{c_1}(x)))
D_{C_1}(c_{d_1}(d_{c_1}(x))) → C_{A_1}(a_{c_1}(x))
C_{A_1}(a_{d_1}(d_{a_1}(x))) → D_{C_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x)))))
D_{C_1}(c_{d_1}(d_{c_1}(x))) → A_{C_1}(x)
A_{C_1}(c_{a_1}(a_{d_1}(x))) → A_{A_1}(a_{d_1}(x))
A_{A_1}(a_{d_1}(d_{c_1}(x))) → B_{C_1}(c_{a_1}(a_{c_1}(x)))
B_{C_1}(c_{d_1}(d_{a_1}(x))) → A_{A_1}(x)
A_{A_1}(a_{d_1}(d_{c_1}(x))) → C_{A_1}(a_{c_1}(x))
C_{A_1}(a_{d_1}(d_{a_1}(x))) → C_{B_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))
C_{B_1}(b_{c_1}(c_{a_1}(a_{b_1}(x)))) → C_{C_1}(c_{b_1}(b_{c_1}(c_{b_1}(x))))
C_{C_1}(c_{d_1}(d_{c_1}(x))) → C_{A_1}(a_{c_1}(x))
C_{A_1}(a_{d_1}(d_{a_1}(x))) → B_{C_1}(c_{a_1}(a_{a_1}(x)))
B_{C_1}(c_{d_1}(d_{d_1}(x))) → D_{C_1}(c_{a_1}(a_{d_1}(x)))
D_{C_1}(c_{d_1}(d_{a_1}(x))) → D_{A_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
D_{A_1}(a_{d_1}(d_{c_1}(x))) → A_{C_1}(x)
A_{C_1}(c_{c_1}(x)) → B_{C_1}(x)
B_{C_1}(c_{d_1}(d_{d_1}(x))) → C_{A_1}(a_{d_1}(x))
C_{A_1}(a_{d_1}(d_{a_1}(x))) → C_{A_1}(a_{a_1}(x))
C_{A_1}(a_{d_1}(d_{a_1}(x))) → A_{A_1}(x)
A_{A_1}(a_{d_1}(d_{c_1}(x))) → A_{C_1}(x)
A_{C_1}(c_{d_1}(d_{c_1}(x))) → A_{A_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
A_{A_1}(a_{d_1}(d_{a_1}(x))) → D_{C_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x)))))
D_{C_1}(c_{d_1}(d_{a_1}(x))) → D_{C_1}(c_{a_1}(a_{a_1}(x)))
D_{C_1}(c_{d_1}(d_{a_1}(x))) → C_{A_1}(a_{a_1}(x))
C_{A_1}(a_{d_1}(d_{d_1}(x))) → D_{C_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x)))))
D_{C_1}(c_{d_1}(d_{a_1}(x))) → A_{A_1}(x)
A_{A_1}(a_{d_1}(d_{a_1}(x))) → C_{B_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))
C_{B_1}(b_{c_1}(c_{a_1}(a_{b_1}(x)))) → C_{B_1}(b_{c_1}(c_{b_1}(x)))
C_{B_1}(b_{c_1}(c_{a_1}(a_{b_1}(x)))) → B_{C_1}(c_{b_1}(x))
C_{B_1}(b_{c_1}(c_{a_1}(a_{b_1}(x)))) → C_{B_1}(x)
C_{B_1}(b_{c_1}(c_{a_1}(a_{a_1}(x)))) → C_{C_1}(c_{b_1}(b_{c_1}(c_{a_1}(x))))
C_{C_1}(c_{d_1}(d_{c_1}(x))) → A_{C_1}(x)
A_{C_1}(c_{d_1}(d_{c_1}(x))) → D_{C_1}(c_{a_1}(a_{c_1}(x)))
D_{C_1}(c_{d_1}(d_{d_1}(x))) → D_{A_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
D_{A_1}(a_{d_1}(d_{a_1}(x))) → D_{C_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x)))))
D_{C_1}(c_{d_1}(d_{d_1}(x))) → D_{C_1}(c_{a_1}(a_{d_1}(x)))
D_{C_1}(c_{d_1}(d_{d_1}(x))) → C_{A_1}(a_{d_1}(x))
C_{A_1}(a_{d_1}(d_{d_1}(x))) → C_{B_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))
C_{B_1}(b_{c_1}(c_{a_1}(a_{a_1}(x)))) → C_{B_1}(b_{c_1}(c_{a_1}(x)))
C_{B_1}(b_{c_1}(c_{a_1}(a_{a_1}(x)))) → B_{C_1}(c_{a_1}(x))
C_{B_1}(b_{c_1}(c_{a_1}(a_{a_1}(x)))) → C_{A_1}(x)
C_{A_1}(a_{d_1}(d_{d_1}(x))) → B_{C_1}(c_{a_1}(a_{d_1}(x)))
C_{A_1}(a_{d_1}(d_{d_1}(x))) → C_{A_1}(a_{d_1}(x))
C_{B_1}(b_{c_1}(c_{a_1}(a_{d_1}(x)))) → C_{C_1}(c_{b_1}(b_{c_1}(c_{d_1}(x))))
C_{C_1}(c_{d_1}(d_{a_1}(x))) → C_{A_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
C_{C_1}(c_{d_1}(d_{a_1}(x))) → D_{C_1}(c_{a_1}(a_{a_1}(x)))
C_{C_1}(c_{d_1}(d_{a_1}(x))) → C_{A_1}(a_{a_1}(x))
C_{C_1}(c_{d_1}(d_{a_1}(x))) → A_{A_1}(x)
A_{A_1}(a_{d_1}(d_{a_1}(x))) → B_{C_1}(c_{a_1}(a_{a_1}(x)))
A_{A_1}(a_{d_1}(d_{a_1}(x))) → C_{A_1}(a_{a_1}(x))
A_{A_1}(a_{d_1}(d_{a_1}(x))) → A_{A_1}(x)
A_{A_1}(a_{d_1}(d_{d_1}(x))) → D_{C_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x)))))
A_{A_1}(a_{d_1}(d_{d_1}(x))) → C_{B_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))
C_{B_1}(b_{c_1}(c_{a_1}(a_{d_1}(x)))) → C_{B_1}(b_{c_1}(c_{d_1}(x)))
C_{B_1}(b_{c_1}(c_{a_1}(a_{d_1}(x)))) → B_{C_1}(c_{d_1}(x))
A_{A_1}(a_{d_1}(d_{d_1}(x))) → B_{C_1}(c_{a_1}(a_{d_1}(x)))
A_{A_1}(a_{d_1}(d_{d_1}(x))) → C_{A_1}(a_{d_1}(x))
C_{C_1}(c_{d_1}(d_{d_1}(x))) → C_{A_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
C_{C_1}(c_{d_1}(d_{d_1}(x))) → D_{C_1}(c_{a_1}(a_{d_1}(x)))
C_{C_1}(c_{d_1}(d_{d_1}(x))) → C_{A_1}(a_{d_1}(x))
D_{A_1}(a_{d_1}(d_{a_1}(x))) → C_{B_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))
D_{A_1}(a_{d_1}(d_{a_1}(x))) → B_{C_1}(c_{a_1}(a_{a_1}(x)))
D_{A_1}(a_{d_1}(d_{a_1}(x))) → C_{A_1}(a_{a_1}(x))
D_{A_1}(a_{d_1}(d_{a_1}(x))) → A_{A_1}(x)
D_{A_1}(a_{d_1}(d_{d_1}(x))) → D_{C_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x)))))
D_{A_1}(a_{d_1}(d_{d_1}(x))) → C_{B_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))
D_{A_1}(a_{d_1}(d_{d_1}(x))) → B_{C_1}(c_{a_1}(a_{d_1}(x)))
D_{A_1}(a_{d_1}(d_{d_1}(x))) → C_{A_1}(a_{d_1}(x))
A_{C_1}(c_{d_1}(d_{c_1}(x))) → C_{A_1}(a_{c_1}(x))
A_{C_1}(c_{d_1}(d_{c_1}(x))) → A_{C_1}(x)
A_{C_1}(c_{d_1}(d_{a_1}(x))) → A_{A_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
A_{C_1}(c_{d_1}(d_{a_1}(x))) → D_{C_1}(c_{a_1}(a_{a_1}(x)))
A_{C_1}(c_{d_1}(d_{a_1}(x))) → C_{A_1}(a_{a_1}(x))
A_{C_1}(c_{d_1}(d_{a_1}(x))) → A_{A_1}(x)
A_{C_1}(c_{d_1}(d_{d_1}(x))) → A_{A_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
A_{C_1}(c_{d_1}(d_{d_1}(x))) → D_{C_1}(c_{a_1}(a_{d_1}(x)))
A_{C_1}(c_{d_1}(d_{d_1}(x))) → C_{A_1}(a_{d_1}(x))
The TRS R consists of the following rules:
c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{c_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{b_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{b_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{d_1}(x))))
c_{c_1}(c_{a_1}(a_{c_1}(x))) → c_{a_1}(a_{c_1}(x))
c_{c_1}(c_{a_1}(a_{b_1}(x))) → c_{a_1}(a_{b_1}(x))
c_{c_1}(c_{a_1}(a_{a_1}(x))) → c_{a_1}(a_{a_1}(x))
c_{c_1}(c_{a_1}(a_{d_1}(x))) → c_{a_1}(a_{d_1}(x))
a_{c_1}(c_{a_1}(a_{c_1}(x))) → a_{a_1}(a_{c_1}(x))
a_{c_1}(c_{a_1}(a_{b_1}(x))) → a_{a_1}(a_{b_1}(x))
a_{c_1}(c_{a_1}(a_{a_1}(x))) → a_{a_1}(a_{a_1}(x))
a_{c_1}(c_{a_1}(a_{d_1}(x))) → a_{a_1}(a_{d_1}(x))
d_{c_1}(c_{a_1}(a_{c_1}(x))) → d_{a_1}(a_{c_1}(x))
d_{c_1}(c_{a_1}(a_{b_1}(x))) → d_{a_1}(a_{b_1}(x))
d_{c_1}(c_{a_1}(a_{a_1}(x))) → d_{a_1}(a_{a_1}(x))
d_{c_1}(c_{a_1}(a_{d_1}(x))) → d_{a_1}(a_{d_1}(x))
b_{c_1}(c_{a_1}(a_{c_1}(x))) → b_{a_1}(a_{c_1}(x))
b_{c_1}(c_{a_1}(a_{b_1}(x))) → b_{a_1}(a_{b_1}(x))
b_{c_1}(c_{a_1}(a_{a_1}(x))) → b_{a_1}(a_{a_1}(x))
b_{c_1}(c_{a_1}(a_{d_1}(x))) → b_{a_1}(a_{d_1}(x))
c_{a_1}(a_{d_1}(d_{c_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))))
c_{a_1}(a_{d_1}(d_{a_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))))
c_{a_1}(a_{d_1}(d_{d_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))))
a_{a_1}(a_{d_1}(d_{c_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))))
a_{a_1}(a_{d_1}(d_{a_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))))
a_{a_1}(a_{d_1}(d_{d_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))))
d_{a_1}(a_{d_1}(d_{c_1}(x))) → d_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))))
d_{a_1}(a_{d_1}(d_{a_1}(x))) → d_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))))
d_{a_1}(a_{d_1}(d_{d_1}(x))) → d_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))))
c_{c_1}(c_{c_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
c_{c_1}(c_{b_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
c_{c_1}(c_{a_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
a_{c_1}(c_{c_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
a_{c_1}(c_{b_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
a_{c_1}(c_{a_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
d_{c_1}(c_{c_1}(x)) → d_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
d_{c_1}(c_{b_1}(x)) → d_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
d_{c_1}(c_{a_1}(x)) → d_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
b_{c_1}(c_{c_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
b_{c_1}(c_{b_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
b_{c_1}(c_{a_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
c_{c_1}(c_{d_1}(d_{c_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
c_{c_1}(c_{d_1}(d_{a_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
c_{c_1}(c_{d_1}(d_{d_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
a_{c_1}(c_{d_1}(d_{c_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
a_{c_1}(c_{d_1}(d_{a_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
a_{c_1}(c_{d_1}(d_{d_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
d_{c_1}(c_{d_1}(d_{c_1}(x))) → d_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
d_{c_1}(c_{d_1}(d_{a_1}(x))) → d_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
d_{c_1}(c_{d_1}(d_{d_1}(x))) → d_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
b_{c_1}(c_{d_1}(d_{c_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
b_{c_1}(c_{d_1}(d_{a_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
b_{c_1}(c_{d_1}(d_{d_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(13) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
B_{C_1}(c_{d_1}(d_{c_1}(x))) → D_{C_1}(c_{a_1}(a_{c_1}(x)))
D_{A_1}(a_{d_1}(d_{c_1}(x))) → D_{C_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x)))))
D_{A_1}(a_{d_1}(d_{c_1}(x))) → C_{B_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))
C_{A_1}(a_{d_1}(d_{c_1}(x))) → D_{C_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x)))))
D_{A_1}(a_{d_1}(d_{c_1}(x))) → B_{C_1}(c_{a_1}(a_{c_1}(x)))
B_{C_1}(c_{d_1}(d_{c_1}(x))) → C_{A_1}(a_{c_1}(x))
C_{A_1}(a_{d_1}(d_{c_1}(x))) → C_{B_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))
B_{C_1}(c_{d_1}(d_{c_1}(x))) → A_{C_1}(x)
A_{A_1}(a_{d_1}(d_{c_1}(x))) → D_{C_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x)))))
B_{C_1}(c_{d_1}(d_{a_1}(x))) → D_{C_1}(c_{a_1}(a_{a_1}(x)))
D_{A_1}(a_{d_1}(d_{c_1}(x))) → C_{A_1}(a_{c_1}(x))
C_{A_1}(a_{d_1}(d_{c_1}(x))) → B_{C_1}(c_{a_1}(a_{c_1}(x)))
B_{C_1}(c_{d_1}(d_{a_1}(x))) → C_{A_1}(a_{a_1}(x))
C_{A_1}(a_{d_1}(d_{c_1}(x))) → C_{A_1}(a_{c_1}(x))
C_{A_1}(a_{d_1}(d_{c_1}(x))) → A_{C_1}(x)
A_{A_1}(a_{d_1}(d_{c_1}(x))) → C_{B_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))
C_{C_1}(c_{d_1}(d_{c_1}(x))) → D_{C_1}(c_{a_1}(a_{c_1}(x)))
D_{C_1}(c_{d_1}(d_{c_1}(x))) → D_{C_1}(c_{a_1}(a_{c_1}(x)))
D_{C_1}(c_{d_1}(d_{c_1}(x))) → C_{A_1}(a_{c_1}(x))
C_{A_1}(a_{d_1}(d_{a_1}(x))) → D_{C_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x)))))
D_{C_1}(c_{d_1}(d_{c_1}(x))) → A_{C_1}(x)
A_{A_1}(a_{d_1}(d_{c_1}(x))) → B_{C_1}(c_{a_1}(a_{c_1}(x)))
B_{C_1}(c_{d_1}(d_{a_1}(x))) → A_{A_1}(x)
A_{A_1}(a_{d_1}(d_{c_1}(x))) → C_{A_1}(a_{c_1}(x))
C_{A_1}(a_{d_1}(d_{a_1}(x))) → C_{B_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))
C_{C_1}(c_{d_1}(d_{c_1}(x))) → C_{A_1}(a_{c_1}(x))
C_{A_1}(a_{d_1}(d_{a_1}(x))) → B_{C_1}(c_{a_1}(a_{a_1}(x)))
B_{C_1}(c_{d_1}(d_{d_1}(x))) → D_{C_1}(c_{a_1}(a_{d_1}(x)))
D_{A_1}(a_{d_1}(d_{c_1}(x))) → A_{C_1}(x)
B_{C_1}(c_{d_1}(d_{d_1}(x))) → C_{A_1}(a_{d_1}(x))
C_{A_1}(a_{d_1}(d_{a_1}(x))) → C_{A_1}(a_{a_1}(x))
C_{A_1}(a_{d_1}(d_{a_1}(x))) → A_{A_1}(x)
A_{A_1}(a_{d_1}(d_{c_1}(x))) → A_{C_1}(x)
A_{A_1}(a_{d_1}(d_{a_1}(x))) → D_{C_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x)))))
D_{C_1}(c_{d_1}(d_{a_1}(x))) → D_{C_1}(c_{a_1}(a_{a_1}(x)))
D_{C_1}(c_{d_1}(d_{a_1}(x))) → C_{A_1}(a_{a_1}(x))
C_{A_1}(a_{d_1}(d_{d_1}(x))) → D_{C_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x)))))
D_{C_1}(c_{d_1}(d_{a_1}(x))) → A_{A_1}(x)
A_{A_1}(a_{d_1}(d_{a_1}(x))) → C_{B_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))
C_{C_1}(c_{d_1}(d_{c_1}(x))) → A_{C_1}(x)
A_{C_1}(c_{d_1}(d_{c_1}(x))) → D_{C_1}(c_{a_1}(a_{c_1}(x)))
D_{A_1}(a_{d_1}(d_{a_1}(x))) → D_{C_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x)))))
D_{C_1}(c_{d_1}(d_{d_1}(x))) → D_{C_1}(c_{a_1}(a_{d_1}(x)))
D_{C_1}(c_{d_1}(d_{d_1}(x))) → C_{A_1}(a_{d_1}(x))
C_{A_1}(a_{d_1}(d_{d_1}(x))) → C_{B_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))
C_{A_1}(a_{d_1}(d_{d_1}(x))) → B_{C_1}(c_{a_1}(a_{d_1}(x)))
C_{A_1}(a_{d_1}(d_{d_1}(x))) → C_{A_1}(a_{d_1}(x))
C_{B_1}(b_{c_1}(c_{a_1}(a_{d_1}(x)))) → C_{C_1}(c_{b_1}(b_{c_1}(c_{d_1}(x))))
C_{C_1}(c_{d_1}(d_{a_1}(x))) → D_{C_1}(c_{a_1}(a_{a_1}(x)))
C_{C_1}(c_{d_1}(d_{a_1}(x))) → C_{A_1}(a_{a_1}(x))
C_{C_1}(c_{d_1}(d_{a_1}(x))) → A_{A_1}(x)
A_{A_1}(a_{d_1}(d_{a_1}(x))) → B_{C_1}(c_{a_1}(a_{a_1}(x)))
A_{A_1}(a_{d_1}(d_{a_1}(x))) → C_{A_1}(a_{a_1}(x))
A_{A_1}(a_{d_1}(d_{a_1}(x))) → A_{A_1}(x)
A_{A_1}(a_{d_1}(d_{d_1}(x))) → D_{C_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x)))))
A_{A_1}(a_{d_1}(d_{d_1}(x))) → C_{B_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))
A_{A_1}(a_{d_1}(d_{d_1}(x))) → B_{C_1}(c_{a_1}(a_{d_1}(x)))
A_{A_1}(a_{d_1}(d_{d_1}(x))) → C_{A_1}(a_{d_1}(x))
C_{C_1}(c_{d_1}(d_{d_1}(x))) → D_{C_1}(c_{a_1}(a_{d_1}(x)))
C_{C_1}(c_{d_1}(d_{d_1}(x))) → C_{A_1}(a_{d_1}(x))
D_{A_1}(a_{d_1}(d_{a_1}(x))) → C_{B_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))
D_{A_1}(a_{d_1}(d_{a_1}(x))) → B_{C_1}(c_{a_1}(a_{a_1}(x)))
D_{A_1}(a_{d_1}(d_{a_1}(x))) → C_{A_1}(a_{a_1}(x))
D_{A_1}(a_{d_1}(d_{a_1}(x))) → A_{A_1}(x)
D_{A_1}(a_{d_1}(d_{d_1}(x))) → D_{C_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x)))))
D_{A_1}(a_{d_1}(d_{d_1}(x))) → C_{B_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))
D_{A_1}(a_{d_1}(d_{d_1}(x))) → B_{C_1}(c_{a_1}(a_{d_1}(x)))
D_{A_1}(a_{d_1}(d_{d_1}(x))) → C_{A_1}(a_{d_1}(x))
A_{C_1}(c_{d_1}(d_{c_1}(x))) → C_{A_1}(a_{c_1}(x))
A_{C_1}(c_{d_1}(d_{c_1}(x))) → A_{C_1}(x)
A_{C_1}(c_{d_1}(d_{a_1}(x))) → D_{C_1}(c_{a_1}(a_{a_1}(x)))
A_{C_1}(c_{d_1}(d_{a_1}(x))) → C_{A_1}(a_{a_1}(x))
A_{C_1}(c_{d_1}(d_{a_1}(x))) → A_{A_1}(x)
A_{C_1}(c_{d_1}(d_{d_1}(x))) → D_{C_1}(c_{a_1}(a_{d_1}(x)))
A_{C_1}(c_{d_1}(d_{d_1}(x))) → C_{A_1}(a_{d_1}(x))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:
POL(A_{A_1}(x1)) = x1
POL(A_{C_1}(x1)) = x1
POL(B_{C_1}(x1)) = x1
POL(C_{A_1}(x1)) = x1
POL(C_{B_1}(x1)) = x1
POL(C_{C_1}(x1)) = x1
POL(D_{A_1}(x1)) = x1
POL(D_{C_1}(x1)) = x1
POL(a_{a_1}(x1)) = x1
POL(a_{b_1}(x1)) = x1
POL(a_{c_1}(x1)) = x1
POL(a_{d_1}(x1)) = 1 + x1
POL(b_{a_1}(x1)) = 0
POL(b_{b_1}(x1)) = 0
POL(b_{c_1}(x1)) = x1
POL(c_{a_1}(x1)) = x1
POL(c_{b_1}(x1)) = 0
POL(c_{c_1}(x1)) = x1
POL(c_{d_1}(x1)) = 1 + x1
POL(d_{a_1}(x1)) = x1
POL(d_{c_1}(x1)) = x1
POL(d_{d_1}(x1)) = 1 + x1
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
a_{c_1}(c_{a_1}(a_{c_1}(x))) → a_{a_1}(a_{c_1}(x))
a_{c_1}(c_{a_1}(a_{b_1}(x))) → a_{a_1}(a_{b_1}(x))
a_{c_1}(c_{a_1}(a_{a_1}(x))) → a_{a_1}(a_{a_1}(x))
a_{c_1}(c_{a_1}(a_{d_1}(x))) → a_{a_1}(a_{d_1}(x))
a_{c_1}(c_{c_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
a_{c_1}(c_{b_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
a_{c_1}(c_{a_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
a_{c_1}(c_{d_1}(d_{c_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
a_{c_1}(c_{d_1}(d_{a_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
a_{c_1}(c_{d_1}(d_{d_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
c_{a_1}(a_{d_1}(d_{c_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))))
c_{a_1}(a_{d_1}(d_{a_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))))
c_{a_1}(a_{d_1}(d_{d_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))))
b_{c_1}(c_{a_1}(a_{c_1}(x))) → b_{a_1}(a_{c_1}(x))
b_{c_1}(c_{a_1}(a_{b_1}(x))) → b_{a_1}(a_{b_1}(x))
b_{c_1}(c_{a_1}(a_{a_1}(x))) → b_{a_1}(a_{a_1}(x))
b_{c_1}(c_{a_1}(a_{d_1}(x))) → b_{a_1}(a_{d_1}(x))
b_{c_1}(c_{c_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
b_{c_1}(c_{b_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
b_{c_1}(c_{a_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
b_{c_1}(c_{d_1}(d_{c_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
b_{c_1}(c_{d_1}(d_{a_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
b_{c_1}(c_{d_1}(d_{d_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{c_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{b_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{b_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{d_1}(x))))
a_{a_1}(a_{d_1}(d_{c_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))))
a_{a_1}(a_{d_1}(d_{a_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))))
a_{a_1}(a_{d_1}(d_{d_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))))
c_{c_1}(c_{a_1}(a_{c_1}(x))) → c_{a_1}(a_{c_1}(x))
c_{c_1}(c_{a_1}(a_{b_1}(x))) → c_{a_1}(a_{b_1}(x))
c_{c_1}(c_{a_1}(a_{a_1}(x))) → c_{a_1}(a_{a_1}(x))
c_{c_1}(c_{a_1}(a_{d_1}(x))) → c_{a_1}(a_{d_1}(x))
c_{c_1}(c_{c_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
c_{c_1}(c_{b_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
c_{c_1}(c_{a_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
c_{c_1}(c_{d_1}(d_{c_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
c_{c_1}(c_{d_1}(d_{a_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
c_{c_1}(c_{d_1}(d_{d_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
d_{c_1}(c_{a_1}(a_{c_1}(x))) → d_{a_1}(a_{c_1}(x))
d_{c_1}(c_{a_1}(a_{b_1}(x))) → d_{a_1}(a_{b_1}(x))
d_{c_1}(c_{a_1}(a_{a_1}(x))) → d_{a_1}(a_{a_1}(x))
d_{c_1}(c_{a_1}(a_{d_1}(x))) → d_{a_1}(a_{d_1}(x))
d_{c_1}(c_{c_1}(x)) → d_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
d_{c_1}(c_{b_1}(x)) → d_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
d_{c_1}(c_{a_1}(x)) → d_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
d_{c_1}(c_{d_1}(d_{c_1}(x))) → d_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
d_{c_1}(c_{d_1}(d_{a_1}(x))) → d_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
d_{c_1}(c_{d_1}(d_{d_1}(x))) → d_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
d_{a_1}(a_{d_1}(d_{c_1}(x))) → d_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))))
d_{a_1}(a_{d_1}(d_{a_1}(x))) → d_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))))
d_{a_1}(a_{d_1}(d_{d_1}(x))) → d_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))))
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
C_{C_1}(c_{c_1}(x)) → B_{C_1}(x)
B_{C_1}(c_{c_1}(x)) → B_{C_1}(x)
D_{C_1}(c_{a_1}(a_{c_1}(x))) → D_{A_1}(a_{c_1}(x))
D_{C_1}(c_{a_1}(a_{a_1}(x))) → D_{A_1}(a_{a_1}(x))
C_{B_1}(b_{c_1}(c_{a_1}(a_{c_1}(x)))) → C_{C_1}(c_{b_1}(b_{c_1}(c_{c_1}(x))))
C_{C_1}(c_{d_1}(d_{c_1}(x))) → C_{A_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
D_{C_1}(c_{a_1}(a_{d_1}(x))) → D_{A_1}(a_{d_1}(x))
C_{B_1}(b_{c_1}(c_{a_1}(a_{c_1}(x)))) → C_{B_1}(b_{c_1}(c_{c_1}(x)))
C_{B_1}(b_{c_1}(c_{a_1}(a_{c_1}(x)))) → B_{C_1}(c_{c_1}(x))
A_{C_1}(c_{a_1}(a_{c_1}(x))) → A_{A_1}(a_{c_1}(x))
D_{C_1}(c_{c_1}(x)) → B_{C_1}(x)
D_{C_1}(c_{d_1}(d_{c_1}(x))) → D_{A_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
A_{C_1}(c_{a_1}(a_{a_1}(x))) → A_{A_1}(a_{a_1}(x))
C_{B_1}(b_{c_1}(c_{a_1}(a_{c_1}(x)))) → C_{C_1}(x)
A_{C_1}(c_{a_1}(a_{d_1}(x))) → A_{A_1}(a_{d_1}(x))
C_{B_1}(b_{c_1}(c_{a_1}(a_{b_1}(x)))) → C_{C_1}(c_{b_1}(b_{c_1}(c_{b_1}(x))))
D_{C_1}(c_{d_1}(d_{a_1}(x))) → D_{A_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
A_{C_1}(c_{c_1}(x)) → B_{C_1}(x)
A_{C_1}(c_{d_1}(d_{c_1}(x))) → A_{A_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
C_{B_1}(b_{c_1}(c_{a_1}(a_{b_1}(x)))) → C_{B_1}(b_{c_1}(c_{b_1}(x)))
C_{B_1}(b_{c_1}(c_{a_1}(a_{b_1}(x)))) → B_{C_1}(c_{b_1}(x))
C_{B_1}(b_{c_1}(c_{a_1}(a_{b_1}(x)))) → C_{B_1}(x)
C_{B_1}(b_{c_1}(c_{a_1}(a_{a_1}(x)))) → C_{C_1}(c_{b_1}(b_{c_1}(c_{a_1}(x))))
D_{C_1}(c_{d_1}(d_{d_1}(x))) → D_{A_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
C_{B_1}(b_{c_1}(c_{a_1}(a_{a_1}(x)))) → C_{B_1}(b_{c_1}(c_{a_1}(x)))
C_{B_1}(b_{c_1}(c_{a_1}(a_{a_1}(x)))) → B_{C_1}(c_{a_1}(x))
C_{B_1}(b_{c_1}(c_{a_1}(a_{a_1}(x)))) → C_{A_1}(x)
C_{C_1}(c_{d_1}(d_{a_1}(x))) → C_{A_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
C_{B_1}(b_{c_1}(c_{a_1}(a_{d_1}(x)))) → C_{B_1}(b_{c_1}(c_{d_1}(x)))
C_{B_1}(b_{c_1}(c_{a_1}(a_{d_1}(x)))) → B_{C_1}(c_{d_1}(x))
C_{C_1}(c_{d_1}(d_{d_1}(x))) → C_{A_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
A_{C_1}(c_{d_1}(d_{a_1}(x))) → A_{A_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
A_{C_1}(c_{d_1}(d_{d_1}(x))) → A_{A_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
The TRS R consists of the following rules:
c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{c_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{b_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{b_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{d_1}(x))))
c_{c_1}(c_{a_1}(a_{c_1}(x))) → c_{a_1}(a_{c_1}(x))
c_{c_1}(c_{a_1}(a_{b_1}(x))) → c_{a_1}(a_{b_1}(x))
c_{c_1}(c_{a_1}(a_{a_1}(x))) → c_{a_1}(a_{a_1}(x))
c_{c_1}(c_{a_1}(a_{d_1}(x))) → c_{a_1}(a_{d_1}(x))
a_{c_1}(c_{a_1}(a_{c_1}(x))) → a_{a_1}(a_{c_1}(x))
a_{c_1}(c_{a_1}(a_{b_1}(x))) → a_{a_1}(a_{b_1}(x))
a_{c_1}(c_{a_1}(a_{a_1}(x))) → a_{a_1}(a_{a_1}(x))
a_{c_1}(c_{a_1}(a_{d_1}(x))) → a_{a_1}(a_{d_1}(x))
d_{c_1}(c_{a_1}(a_{c_1}(x))) → d_{a_1}(a_{c_1}(x))
d_{c_1}(c_{a_1}(a_{b_1}(x))) → d_{a_1}(a_{b_1}(x))
d_{c_1}(c_{a_1}(a_{a_1}(x))) → d_{a_1}(a_{a_1}(x))
d_{c_1}(c_{a_1}(a_{d_1}(x))) → d_{a_1}(a_{d_1}(x))
b_{c_1}(c_{a_1}(a_{c_1}(x))) → b_{a_1}(a_{c_1}(x))
b_{c_1}(c_{a_1}(a_{b_1}(x))) → b_{a_1}(a_{b_1}(x))
b_{c_1}(c_{a_1}(a_{a_1}(x))) → b_{a_1}(a_{a_1}(x))
b_{c_1}(c_{a_1}(a_{d_1}(x))) → b_{a_1}(a_{d_1}(x))
c_{a_1}(a_{d_1}(d_{c_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))))
c_{a_1}(a_{d_1}(d_{a_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))))
c_{a_1}(a_{d_1}(d_{d_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))))
a_{a_1}(a_{d_1}(d_{c_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))))
a_{a_1}(a_{d_1}(d_{a_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))))
a_{a_1}(a_{d_1}(d_{d_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))))
d_{a_1}(a_{d_1}(d_{c_1}(x))) → d_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))))
d_{a_1}(a_{d_1}(d_{a_1}(x))) → d_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))))
d_{a_1}(a_{d_1}(d_{d_1}(x))) → d_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))))
c_{c_1}(c_{c_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
c_{c_1}(c_{b_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
c_{c_1}(c_{a_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
a_{c_1}(c_{c_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
a_{c_1}(c_{b_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
a_{c_1}(c_{a_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
d_{c_1}(c_{c_1}(x)) → d_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
d_{c_1}(c_{b_1}(x)) → d_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
d_{c_1}(c_{a_1}(x)) → d_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
b_{c_1}(c_{c_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
b_{c_1}(c_{b_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
b_{c_1}(c_{a_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
c_{c_1}(c_{d_1}(d_{c_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
c_{c_1}(c_{d_1}(d_{a_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
c_{c_1}(c_{d_1}(d_{d_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
a_{c_1}(c_{d_1}(d_{c_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
a_{c_1}(c_{d_1}(d_{a_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
a_{c_1}(c_{d_1}(d_{d_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
d_{c_1}(c_{d_1}(d_{c_1}(x))) → d_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
d_{c_1}(c_{d_1}(d_{a_1}(x))) → d_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
d_{c_1}(c_{d_1}(d_{d_1}(x))) → d_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
b_{c_1}(c_{d_1}(d_{c_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
b_{c_1}(c_{d_1}(d_{a_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
b_{c_1}(c_{d_1}(d_{d_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(15) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 27 less nodes.
(16) Complex Obligation (AND)
(17) Obligation:
Q DP problem:
The TRS P consists of the following rules:
B_{C_1}(c_{c_1}(x)) → B_{C_1}(x)
The TRS R consists of the following rules:
c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{c_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{b_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{b_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{d_1}(x))))
c_{c_1}(c_{a_1}(a_{c_1}(x))) → c_{a_1}(a_{c_1}(x))
c_{c_1}(c_{a_1}(a_{b_1}(x))) → c_{a_1}(a_{b_1}(x))
c_{c_1}(c_{a_1}(a_{a_1}(x))) → c_{a_1}(a_{a_1}(x))
c_{c_1}(c_{a_1}(a_{d_1}(x))) → c_{a_1}(a_{d_1}(x))
a_{c_1}(c_{a_1}(a_{c_1}(x))) → a_{a_1}(a_{c_1}(x))
a_{c_1}(c_{a_1}(a_{b_1}(x))) → a_{a_1}(a_{b_1}(x))
a_{c_1}(c_{a_1}(a_{a_1}(x))) → a_{a_1}(a_{a_1}(x))
a_{c_1}(c_{a_1}(a_{d_1}(x))) → a_{a_1}(a_{d_1}(x))
d_{c_1}(c_{a_1}(a_{c_1}(x))) → d_{a_1}(a_{c_1}(x))
d_{c_1}(c_{a_1}(a_{b_1}(x))) → d_{a_1}(a_{b_1}(x))
d_{c_1}(c_{a_1}(a_{a_1}(x))) → d_{a_1}(a_{a_1}(x))
d_{c_1}(c_{a_1}(a_{d_1}(x))) → d_{a_1}(a_{d_1}(x))
b_{c_1}(c_{a_1}(a_{c_1}(x))) → b_{a_1}(a_{c_1}(x))
b_{c_1}(c_{a_1}(a_{b_1}(x))) → b_{a_1}(a_{b_1}(x))
b_{c_1}(c_{a_1}(a_{a_1}(x))) → b_{a_1}(a_{a_1}(x))
b_{c_1}(c_{a_1}(a_{d_1}(x))) → b_{a_1}(a_{d_1}(x))
c_{a_1}(a_{d_1}(d_{c_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))))
c_{a_1}(a_{d_1}(d_{a_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))))
c_{a_1}(a_{d_1}(d_{d_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))))
a_{a_1}(a_{d_1}(d_{c_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))))
a_{a_1}(a_{d_1}(d_{a_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))))
a_{a_1}(a_{d_1}(d_{d_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))))
d_{a_1}(a_{d_1}(d_{c_1}(x))) → d_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))))
d_{a_1}(a_{d_1}(d_{a_1}(x))) → d_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))))
d_{a_1}(a_{d_1}(d_{d_1}(x))) → d_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))))
c_{c_1}(c_{c_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
c_{c_1}(c_{b_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
c_{c_1}(c_{a_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
a_{c_1}(c_{c_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
a_{c_1}(c_{b_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
a_{c_1}(c_{a_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
d_{c_1}(c_{c_1}(x)) → d_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
d_{c_1}(c_{b_1}(x)) → d_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
d_{c_1}(c_{a_1}(x)) → d_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
b_{c_1}(c_{c_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
b_{c_1}(c_{b_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
b_{c_1}(c_{a_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
c_{c_1}(c_{d_1}(d_{c_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
c_{c_1}(c_{d_1}(d_{a_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
c_{c_1}(c_{d_1}(d_{d_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
a_{c_1}(c_{d_1}(d_{c_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
a_{c_1}(c_{d_1}(d_{a_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
a_{c_1}(c_{d_1}(d_{d_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
d_{c_1}(c_{d_1}(d_{c_1}(x))) → d_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
d_{c_1}(c_{d_1}(d_{a_1}(x))) → d_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
d_{c_1}(c_{d_1}(d_{d_1}(x))) → d_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
b_{c_1}(c_{d_1}(d_{c_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
b_{c_1}(c_{d_1}(d_{a_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
b_{c_1}(c_{d_1}(d_{d_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(18) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(19) Obligation:
Q DP problem:
The TRS P consists of the following rules:
B_{C_1}(c_{c_1}(x)) → B_{C_1}(x)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(20) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
B_{C_1}(c_{c_1}(x)) → B_{C_1}(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:
POL(B_{C_1}(x1)) = x1
POL(c_{c_1}(x1)) = 1 + x1
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
none
(21) Obligation:
Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(22) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(23) YES
(24) Obligation:
Q DP problem:
The TRS P consists of the following rules:
C_{B_1}(b_{c_1}(c_{a_1}(a_{b_1}(x)))) → C_{B_1}(b_{c_1}(c_{b_1}(x)))
C_{B_1}(b_{c_1}(c_{a_1}(a_{c_1}(x)))) → C_{B_1}(b_{c_1}(c_{c_1}(x)))
C_{B_1}(b_{c_1}(c_{a_1}(a_{b_1}(x)))) → C_{B_1}(x)
C_{B_1}(b_{c_1}(c_{a_1}(a_{a_1}(x)))) → C_{B_1}(b_{c_1}(c_{a_1}(x)))
C_{B_1}(b_{c_1}(c_{a_1}(a_{d_1}(x)))) → C_{B_1}(b_{c_1}(c_{d_1}(x)))
The TRS R consists of the following rules:
c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{c_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{b_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{b_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{d_1}(x))))
c_{c_1}(c_{a_1}(a_{c_1}(x))) → c_{a_1}(a_{c_1}(x))
c_{c_1}(c_{a_1}(a_{b_1}(x))) → c_{a_1}(a_{b_1}(x))
c_{c_1}(c_{a_1}(a_{a_1}(x))) → c_{a_1}(a_{a_1}(x))
c_{c_1}(c_{a_1}(a_{d_1}(x))) → c_{a_1}(a_{d_1}(x))
a_{c_1}(c_{a_1}(a_{c_1}(x))) → a_{a_1}(a_{c_1}(x))
a_{c_1}(c_{a_1}(a_{b_1}(x))) → a_{a_1}(a_{b_1}(x))
a_{c_1}(c_{a_1}(a_{a_1}(x))) → a_{a_1}(a_{a_1}(x))
a_{c_1}(c_{a_1}(a_{d_1}(x))) → a_{a_1}(a_{d_1}(x))
d_{c_1}(c_{a_1}(a_{c_1}(x))) → d_{a_1}(a_{c_1}(x))
d_{c_1}(c_{a_1}(a_{b_1}(x))) → d_{a_1}(a_{b_1}(x))
d_{c_1}(c_{a_1}(a_{a_1}(x))) → d_{a_1}(a_{a_1}(x))
d_{c_1}(c_{a_1}(a_{d_1}(x))) → d_{a_1}(a_{d_1}(x))
b_{c_1}(c_{a_1}(a_{c_1}(x))) → b_{a_1}(a_{c_1}(x))
b_{c_1}(c_{a_1}(a_{b_1}(x))) → b_{a_1}(a_{b_1}(x))
b_{c_1}(c_{a_1}(a_{a_1}(x))) → b_{a_1}(a_{a_1}(x))
b_{c_1}(c_{a_1}(a_{d_1}(x))) → b_{a_1}(a_{d_1}(x))
c_{a_1}(a_{d_1}(d_{c_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))))
c_{a_1}(a_{d_1}(d_{a_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))))
c_{a_1}(a_{d_1}(d_{d_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))))
a_{a_1}(a_{d_1}(d_{c_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))))
a_{a_1}(a_{d_1}(d_{a_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))))
a_{a_1}(a_{d_1}(d_{d_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))))
d_{a_1}(a_{d_1}(d_{c_1}(x))) → d_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))))
d_{a_1}(a_{d_1}(d_{a_1}(x))) → d_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))))
d_{a_1}(a_{d_1}(d_{d_1}(x))) → d_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))))
c_{c_1}(c_{c_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
c_{c_1}(c_{b_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
c_{c_1}(c_{a_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
a_{c_1}(c_{c_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
a_{c_1}(c_{b_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
a_{c_1}(c_{a_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
d_{c_1}(c_{c_1}(x)) → d_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
d_{c_1}(c_{b_1}(x)) → d_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
d_{c_1}(c_{a_1}(x)) → d_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
b_{c_1}(c_{c_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
b_{c_1}(c_{b_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
b_{c_1}(c_{a_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
c_{c_1}(c_{d_1}(d_{c_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
c_{c_1}(c_{d_1}(d_{a_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
c_{c_1}(c_{d_1}(d_{d_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
a_{c_1}(c_{d_1}(d_{c_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
a_{c_1}(c_{d_1}(d_{a_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
a_{c_1}(c_{d_1}(d_{d_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
d_{c_1}(c_{d_1}(d_{c_1}(x))) → d_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
d_{c_1}(c_{d_1}(d_{a_1}(x))) → d_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
d_{c_1}(c_{d_1}(d_{d_1}(x))) → d_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
b_{c_1}(c_{d_1}(d_{c_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
b_{c_1}(c_{d_1}(d_{a_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
b_{c_1}(c_{d_1}(d_{d_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(25) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
C_{B_1}(b_{c_1}(c_{a_1}(a_{c_1}(x)))) → C_{B_1}(b_{c_1}(c_{c_1}(x)))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:
POL(C_{B_1}(x1)) = x1
POL(a_{a_1}(x1)) = x1
POL(a_{b_1}(x1)) = x1
POL(a_{c_1}(x1)) = 1 + x1
POL(a_{d_1}(x1)) = 0
POL(b_{a_1}(x1)) = 0
POL(b_{b_1}(x1)) = 0
POL(b_{c_1}(x1)) = x1
POL(c_{a_1}(x1)) = x1
POL(c_{b_1}(x1)) = 0
POL(c_{c_1}(x1)) = x1
POL(c_{d_1}(x1)) = 0
POL(d_{a_1}(x1)) = 0
POL(d_{c_1}(x1)) = 0
POL(d_{d_1}(x1)) = 0
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{c_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{b_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{b_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{d_1}(x))))
b_{c_1}(c_{a_1}(a_{c_1}(x))) → b_{a_1}(a_{c_1}(x))
b_{c_1}(c_{a_1}(a_{b_1}(x))) → b_{a_1}(a_{b_1}(x))
b_{c_1}(c_{a_1}(a_{a_1}(x))) → b_{a_1}(a_{a_1}(x))
b_{c_1}(c_{a_1}(a_{d_1}(x))) → b_{a_1}(a_{d_1}(x))
b_{c_1}(c_{c_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
b_{c_1}(c_{b_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
b_{c_1}(c_{a_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
b_{c_1}(c_{d_1}(d_{c_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
b_{c_1}(c_{d_1}(d_{a_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
b_{c_1}(c_{d_1}(d_{d_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
c_{c_1}(c_{a_1}(a_{c_1}(x))) → c_{a_1}(a_{c_1}(x))
c_{c_1}(c_{a_1}(a_{b_1}(x))) → c_{a_1}(a_{b_1}(x))
c_{c_1}(c_{a_1}(a_{a_1}(x))) → c_{a_1}(a_{a_1}(x))
c_{c_1}(c_{a_1}(a_{d_1}(x))) → c_{a_1}(a_{d_1}(x))
c_{c_1}(c_{c_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
c_{c_1}(c_{b_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
c_{c_1}(c_{a_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
c_{c_1}(c_{d_1}(d_{c_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
c_{c_1}(c_{d_1}(d_{a_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
c_{c_1}(c_{d_1}(d_{d_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
c_{a_1}(a_{d_1}(d_{c_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))))
c_{a_1}(a_{d_1}(d_{a_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))))
c_{a_1}(a_{d_1}(d_{d_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))))
a_{c_1}(c_{a_1}(a_{c_1}(x))) → a_{a_1}(a_{c_1}(x))
a_{c_1}(c_{a_1}(a_{a_1}(x))) → a_{a_1}(a_{a_1}(x))
a_{c_1}(c_{a_1}(a_{d_1}(x))) → a_{a_1}(a_{d_1}(x))
a_{c_1}(c_{c_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
a_{c_1}(c_{d_1}(d_{c_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
a_{c_1}(c_{d_1}(d_{a_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
a_{c_1}(c_{d_1}(d_{d_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
a_{a_1}(a_{d_1}(d_{c_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))))
a_{a_1}(a_{d_1}(d_{a_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))))
a_{a_1}(a_{d_1}(d_{d_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))))
a_{c_1}(c_{a_1}(a_{b_1}(x))) → a_{a_1}(a_{b_1}(x))
a_{c_1}(c_{b_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
a_{c_1}(c_{a_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
(26) Obligation:
Q DP problem:
The TRS P consists of the following rules:
C_{B_1}(b_{c_1}(c_{a_1}(a_{b_1}(x)))) → C_{B_1}(b_{c_1}(c_{b_1}(x)))
C_{B_1}(b_{c_1}(c_{a_1}(a_{b_1}(x)))) → C_{B_1}(x)
C_{B_1}(b_{c_1}(c_{a_1}(a_{a_1}(x)))) → C_{B_1}(b_{c_1}(c_{a_1}(x)))
C_{B_1}(b_{c_1}(c_{a_1}(a_{d_1}(x)))) → C_{B_1}(b_{c_1}(c_{d_1}(x)))
The TRS R consists of the following rules:
c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{c_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{b_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{b_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{d_1}(x))))
c_{c_1}(c_{a_1}(a_{c_1}(x))) → c_{a_1}(a_{c_1}(x))
c_{c_1}(c_{a_1}(a_{b_1}(x))) → c_{a_1}(a_{b_1}(x))
c_{c_1}(c_{a_1}(a_{a_1}(x))) → c_{a_1}(a_{a_1}(x))
c_{c_1}(c_{a_1}(a_{d_1}(x))) → c_{a_1}(a_{d_1}(x))
a_{c_1}(c_{a_1}(a_{c_1}(x))) → a_{a_1}(a_{c_1}(x))
a_{c_1}(c_{a_1}(a_{b_1}(x))) → a_{a_1}(a_{b_1}(x))
a_{c_1}(c_{a_1}(a_{a_1}(x))) → a_{a_1}(a_{a_1}(x))
a_{c_1}(c_{a_1}(a_{d_1}(x))) → a_{a_1}(a_{d_1}(x))
d_{c_1}(c_{a_1}(a_{c_1}(x))) → d_{a_1}(a_{c_1}(x))
d_{c_1}(c_{a_1}(a_{b_1}(x))) → d_{a_1}(a_{b_1}(x))
d_{c_1}(c_{a_1}(a_{a_1}(x))) → d_{a_1}(a_{a_1}(x))
d_{c_1}(c_{a_1}(a_{d_1}(x))) → d_{a_1}(a_{d_1}(x))
b_{c_1}(c_{a_1}(a_{c_1}(x))) → b_{a_1}(a_{c_1}(x))
b_{c_1}(c_{a_1}(a_{b_1}(x))) → b_{a_1}(a_{b_1}(x))
b_{c_1}(c_{a_1}(a_{a_1}(x))) → b_{a_1}(a_{a_1}(x))
b_{c_1}(c_{a_1}(a_{d_1}(x))) → b_{a_1}(a_{d_1}(x))
c_{a_1}(a_{d_1}(d_{c_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))))
c_{a_1}(a_{d_1}(d_{a_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))))
c_{a_1}(a_{d_1}(d_{d_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))))
a_{a_1}(a_{d_1}(d_{c_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))))
a_{a_1}(a_{d_1}(d_{a_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))))
a_{a_1}(a_{d_1}(d_{d_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))))
d_{a_1}(a_{d_1}(d_{c_1}(x))) → d_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))))
d_{a_1}(a_{d_1}(d_{a_1}(x))) → d_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))))
d_{a_1}(a_{d_1}(d_{d_1}(x))) → d_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))))
c_{c_1}(c_{c_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
c_{c_1}(c_{b_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
c_{c_1}(c_{a_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
a_{c_1}(c_{c_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
a_{c_1}(c_{b_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
a_{c_1}(c_{a_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
d_{c_1}(c_{c_1}(x)) → d_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
d_{c_1}(c_{b_1}(x)) → d_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
d_{c_1}(c_{a_1}(x)) → d_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
b_{c_1}(c_{c_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
b_{c_1}(c_{b_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
b_{c_1}(c_{a_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
c_{c_1}(c_{d_1}(d_{c_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
c_{c_1}(c_{d_1}(d_{a_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
c_{c_1}(c_{d_1}(d_{d_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
a_{c_1}(c_{d_1}(d_{c_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
a_{c_1}(c_{d_1}(d_{a_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
a_{c_1}(c_{d_1}(d_{d_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
d_{c_1}(c_{d_1}(d_{c_1}(x))) → d_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
d_{c_1}(c_{d_1}(d_{a_1}(x))) → d_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
d_{c_1}(c_{d_1}(d_{d_1}(x))) → d_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
b_{c_1}(c_{d_1}(d_{c_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
b_{c_1}(c_{d_1}(d_{a_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
b_{c_1}(c_{d_1}(d_{d_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(27) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
C_{B_1}(b_{c_1}(c_{a_1}(a_{d_1}(x)))) → C_{B_1}(b_{c_1}(c_{d_1}(x)))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:
POL(C_{B_1}(x1)) = 2·x1
POL(a_{a_1}(x1)) = x1
POL(a_{b_1}(x1)) = 2·x1
POL(a_{c_1}(x1)) = 3 + x1
POL(a_{d_1}(x1)) = 4
POL(b_{a_1}(x1)) = 0
POL(b_{b_1}(x1)) = 0
POL(b_{c_1}(x1)) = 2·x1
POL(c_{a_1}(x1)) = 2·x1
POL(c_{b_1}(x1)) = 0
POL(c_{c_1}(x1)) = 4·x1
POL(c_{d_1}(x1)) = 5
POL(d_{a_1}(x1)) = 0
POL(d_{c_1}(x1)) = 0
POL(d_{d_1}(x1)) = 0
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{c_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{b_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{b_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{d_1}(x))))
b_{c_1}(c_{a_1}(a_{c_1}(x))) → b_{a_1}(a_{c_1}(x))
b_{c_1}(c_{a_1}(a_{b_1}(x))) → b_{a_1}(a_{b_1}(x))
b_{c_1}(c_{a_1}(a_{a_1}(x))) → b_{a_1}(a_{a_1}(x))
b_{c_1}(c_{a_1}(a_{d_1}(x))) → b_{a_1}(a_{d_1}(x))
b_{c_1}(c_{c_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
b_{c_1}(c_{b_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
b_{c_1}(c_{a_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
b_{c_1}(c_{d_1}(d_{c_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
b_{c_1}(c_{d_1}(d_{a_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
b_{c_1}(c_{d_1}(d_{d_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
c_{a_1}(a_{d_1}(d_{c_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))))
c_{a_1}(a_{d_1}(d_{a_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))))
c_{a_1}(a_{d_1}(d_{d_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))))
a_{c_1}(c_{a_1}(a_{c_1}(x))) → a_{a_1}(a_{c_1}(x))
a_{c_1}(c_{a_1}(a_{a_1}(x))) → a_{a_1}(a_{a_1}(x))
a_{c_1}(c_{a_1}(a_{d_1}(x))) → a_{a_1}(a_{d_1}(x))
a_{c_1}(c_{c_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
a_{c_1}(c_{d_1}(d_{c_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
a_{c_1}(c_{d_1}(d_{a_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
a_{c_1}(c_{d_1}(d_{d_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
a_{a_1}(a_{d_1}(d_{c_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))))
a_{a_1}(a_{d_1}(d_{a_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))))
a_{a_1}(a_{d_1}(d_{d_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))))
c_{c_1}(c_{a_1}(a_{c_1}(x))) → c_{a_1}(a_{c_1}(x))
c_{c_1}(c_{a_1}(a_{a_1}(x))) → c_{a_1}(a_{a_1}(x))
c_{c_1}(c_{a_1}(a_{d_1}(x))) → c_{a_1}(a_{d_1}(x))
c_{c_1}(c_{c_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
c_{c_1}(c_{d_1}(d_{c_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
c_{c_1}(c_{d_1}(d_{a_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
c_{c_1}(c_{d_1}(d_{d_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
a_{c_1}(c_{a_1}(a_{b_1}(x))) → a_{a_1}(a_{b_1}(x))
a_{c_1}(c_{b_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
a_{c_1}(c_{a_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
c_{c_1}(c_{a_1}(a_{b_1}(x))) → c_{a_1}(a_{b_1}(x))
c_{c_1}(c_{b_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
c_{c_1}(c_{a_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
(28) Obligation:
Q DP problem:
The TRS P consists of the following rules:
C_{B_1}(b_{c_1}(c_{a_1}(a_{b_1}(x)))) → C_{B_1}(b_{c_1}(c_{b_1}(x)))
C_{B_1}(b_{c_1}(c_{a_1}(a_{b_1}(x)))) → C_{B_1}(x)
C_{B_1}(b_{c_1}(c_{a_1}(a_{a_1}(x)))) → C_{B_1}(b_{c_1}(c_{a_1}(x)))
The TRS R consists of the following rules:
c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{c_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{b_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{b_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{d_1}(x))))
c_{c_1}(c_{a_1}(a_{c_1}(x))) → c_{a_1}(a_{c_1}(x))
c_{c_1}(c_{a_1}(a_{b_1}(x))) → c_{a_1}(a_{b_1}(x))
c_{c_1}(c_{a_1}(a_{a_1}(x))) → c_{a_1}(a_{a_1}(x))
c_{c_1}(c_{a_1}(a_{d_1}(x))) → c_{a_1}(a_{d_1}(x))
a_{c_1}(c_{a_1}(a_{c_1}(x))) → a_{a_1}(a_{c_1}(x))
a_{c_1}(c_{a_1}(a_{b_1}(x))) → a_{a_1}(a_{b_1}(x))
a_{c_1}(c_{a_1}(a_{a_1}(x))) → a_{a_1}(a_{a_1}(x))
a_{c_1}(c_{a_1}(a_{d_1}(x))) → a_{a_1}(a_{d_1}(x))
d_{c_1}(c_{a_1}(a_{c_1}(x))) → d_{a_1}(a_{c_1}(x))
d_{c_1}(c_{a_1}(a_{b_1}(x))) → d_{a_1}(a_{b_1}(x))
d_{c_1}(c_{a_1}(a_{a_1}(x))) → d_{a_1}(a_{a_1}(x))
d_{c_1}(c_{a_1}(a_{d_1}(x))) → d_{a_1}(a_{d_1}(x))
b_{c_1}(c_{a_1}(a_{c_1}(x))) → b_{a_1}(a_{c_1}(x))
b_{c_1}(c_{a_1}(a_{b_1}(x))) → b_{a_1}(a_{b_1}(x))
b_{c_1}(c_{a_1}(a_{a_1}(x))) → b_{a_1}(a_{a_1}(x))
b_{c_1}(c_{a_1}(a_{d_1}(x))) → b_{a_1}(a_{d_1}(x))
c_{a_1}(a_{d_1}(d_{c_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))))
c_{a_1}(a_{d_1}(d_{a_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))))
c_{a_1}(a_{d_1}(d_{d_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))))
a_{a_1}(a_{d_1}(d_{c_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))))
a_{a_1}(a_{d_1}(d_{a_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))))
a_{a_1}(a_{d_1}(d_{d_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))))
d_{a_1}(a_{d_1}(d_{c_1}(x))) → d_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))))
d_{a_1}(a_{d_1}(d_{a_1}(x))) → d_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))))
d_{a_1}(a_{d_1}(d_{d_1}(x))) → d_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))))
c_{c_1}(c_{c_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
c_{c_1}(c_{b_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
c_{c_1}(c_{a_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
a_{c_1}(c_{c_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
a_{c_1}(c_{b_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
a_{c_1}(c_{a_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
d_{c_1}(c_{c_1}(x)) → d_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
d_{c_1}(c_{b_1}(x)) → d_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
d_{c_1}(c_{a_1}(x)) → d_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
b_{c_1}(c_{c_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
b_{c_1}(c_{b_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
b_{c_1}(c_{a_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
c_{c_1}(c_{d_1}(d_{c_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
c_{c_1}(c_{d_1}(d_{a_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
c_{c_1}(c_{d_1}(d_{d_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
a_{c_1}(c_{d_1}(d_{c_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
a_{c_1}(c_{d_1}(d_{a_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
a_{c_1}(c_{d_1}(d_{d_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
d_{c_1}(c_{d_1}(d_{c_1}(x))) → d_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
d_{c_1}(c_{d_1}(d_{a_1}(x))) → d_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
d_{c_1}(c_{d_1}(d_{d_1}(x))) → d_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
b_{c_1}(c_{d_1}(d_{c_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
b_{c_1}(c_{d_1}(d_{a_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
b_{c_1}(c_{d_1}(d_{d_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(29) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
C_{B_1}(b_{c_1}(c_{a_1}(a_{a_1}(x)))) → C_{B_1}(b_{c_1}(c_{a_1}(x)))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(C_{B_1}(x1)) = | 0A | + | | · | x1 |
POL(b_{c_1}(x1)) = | | + | / | 0A | -I | -I | \ |
| | -I | 0A | -I | | |
\ | 0A | 0A | 0A | / |
| · | x1 |
POL(c_{a_1}(x1)) = | | + | / | 0A | 0A | 0A | \ |
| | -I | 0A | 0A | | |
\ | 1A | 0A | 0A | / |
| · | x1 |
POL(a_{b_1}(x1)) = | | + | / | 0A | -I | -I | \ |
| | 1A | 0A | 0A | | |
\ | 0A | 0A | 0A | / |
| · | x1 |
POL(c_{b_1}(x1)) = | | + | / | 0A | -I | -I | \ |
| | 0A | 0A | 0A | | |
\ | 1A | 0A | 0A | / |
| · | x1 |
POL(a_{a_1}(x1)) = | | + | / | 1A | 0A | 0A | \ |
| | -I | 0A | 0A | | |
\ | -I | 0A | 0A | / |
| · | x1 |
POL(a_{c_1}(x1)) = | | + | / | 0A | -I | 1A | \ |
| | 0A | 1A | 1A | | |
\ | 1A | 0A | 0A | / |
| · | x1 |
POL(c_{c_1}(x1)) = | | + | / | 0A | 0A | -I | \ |
| | 1A | 0A | 0A | | |
\ | 1A | 1A | 0A | / |
| · | x1 |
POL(a_{d_1}(x1)) = | | + | / | -I | -I | -I | \ |
| | -I | -I | -I | | |
\ | -I | -I | -I | / |
| · | x1 |
POL(c_{d_1}(x1)) = | | + | / | -I | -I | -I | \ |
| | -I | -I | -I | | |
\ | -I | -I | -I | / |
| · | x1 |
POL(b_{a_1}(x1)) = | | + | / | -I | -I | -I | \ |
| | -I | -I | -I | | |
\ | -I | -I | -I | / |
| · | x1 |
POL(b_{b_1}(x1)) = | | + | / | -I | -I | -I | \ |
| | 0A | -I | 0A | | |
\ | 0A | -I | -I | / |
| · | x1 |
POL(d_{c_1}(x1)) = | | + | / | 0A | 0A | 0A | \ |
| | 0A | 0A | 0A | | |
\ | 0A | 0A | 0A | / |
| · | x1 |
POL(d_{a_1}(x1)) = | | + | / | 0A | 0A | 1A | \ |
| | 0A | 1A | 0A | | |
\ | 0A | 1A | -I | / |
| · | x1 |
POL(d_{d_1}(x1)) = | | + | / | -I | -I | 0A | \ |
| | -I | 0A | 0A | | |
\ | -I | -I | -I | / |
| · | x1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{c_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{b_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{b_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{d_1}(x))))
b_{c_1}(c_{a_1}(a_{c_1}(x))) → b_{a_1}(a_{c_1}(x))
b_{c_1}(c_{a_1}(a_{b_1}(x))) → b_{a_1}(a_{b_1}(x))
b_{c_1}(c_{a_1}(a_{a_1}(x))) → b_{a_1}(a_{a_1}(x))
b_{c_1}(c_{a_1}(a_{d_1}(x))) → b_{a_1}(a_{d_1}(x))
b_{c_1}(c_{c_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
b_{c_1}(c_{b_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
b_{c_1}(c_{a_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
b_{c_1}(c_{d_1}(d_{c_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
b_{c_1}(c_{d_1}(d_{a_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
b_{c_1}(c_{d_1}(d_{d_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
c_{a_1}(a_{d_1}(d_{c_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))))
c_{a_1}(a_{d_1}(d_{a_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))))
c_{a_1}(a_{d_1}(d_{d_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))))
a_{c_1}(c_{a_1}(a_{c_1}(x))) → a_{a_1}(a_{c_1}(x))
a_{c_1}(c_{a_1}(a_{a_1}(x))) → a_{a_1}(a_{a_1}(x))
a_{c_1}(c_{a_1}(a_{d_1}(x))) → a_{a_1}(a_{d_1}(x))
a_{c_1}(c_{c_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
a_{c_1}(c_{d_1}(d_{c_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
a_{c_1}(c_{d_1}(d_{a_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
a_{c_1}(c_{d_1}(d_{d_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
a_{a_1}(a_{d_1}(d_{c_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))))
a_{a_1}(a_{d_1}(d_{a_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))))
a_{a_1}(a_{d_1}(d_{d_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))))
c_{c_1}(c_{a_1}(a_{c_1}(x))) → c_{a_1}(a_{c_1}(x))
c_{c_1}(c_{a_1}(a_{a_1}(x))) → c_{a_1}(a_{a_1}(x))
c_{c_1}(c_{a_1}(a_{d_1}(x))) → c_{a_1}(a_{d_1}(x))
c_{c_1}(c_{c_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
c_{c_1}(c_{d_1}(d_{c_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
c_{c_1}(c_{d_1}(d_{a_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
c_{c_1}(c_{d_1}(d_{d_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
a_{c_1}(c_{a_1}(a_{b_1}(x))) → a_{a_1}(a_{b_1}(x))
a_{c_1}(c_{b_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
a_{c_1}(c_{a_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
c_{c_1}(c_{a_1}(a_{b_1}(x))) → c_{a_1}(a_{b_1}(x))
c_{c_1}(c_{b_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
c_{c_1}(c_{a_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
(30) Obligation:
Q DP problem:
The TRS P consists of the following rules:
C_{B_1}(b_{c_1}(c_{a_1}(a_{b_1}(x)))) → C_{B_1}(b_{c_1}(c_{b_1}(x)))
C_{B_1}(b_{c_1}(c_{a_1}(a_{b_1}(x)))) → C_{B_1}(x)
The TRS R consists of the following rules:
c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{c_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{b_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{b_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{d_1}(x))))
c_{c_1}(c_{a_1}(a_{c_1}(x))) → c_{a_1}(a_{c_1}(x))
c_{c_1}(c_{a_1}(a_{b_1}(x))) → c_{a_1}(a_{b_1}(x))
c_{c_1}(c_{a_1}(a_{a_1}(x))) → c_{a_1}(a_{a_1}(x))
c_{c_1}(c_{a_1}(a_{d_1}(x))) → c_{a_1}(a_{d_1}(x))
a_{c_1}(c_{a_1}(a_{c_1}(x))) → a_{a_1}(a_{c_1}(x))
a_{c_1}(c_{a_1}(a_{b_1}(x))) → a_{a_1}(a_{b_1}(x))
a_{c_1}(c_{a_1}(a_{a_1}(x))) → a_{a_1}(a_{a_1}(x))
a_{c_1}(c_{a_1}(a_{d_1}(x))) → a_{a_1}(a_{d_1}(x))
d_{c_1}(c_{a_1}(a_{c_1}(x))) → d_{a_1}(a_{c_1}(x))
d_{c_1}(c_{a_1}(a_{b_1}(x))) → d_{a_1}(a_{b_1}(x))
d_{c_1}(c_{a_1}(a_{a_1}(x))) → d_{a_1}(a_{a_1}(x))
d_{c_1}(c_{a_1}(a_{d_1}(x))) → d_{a_1}(a_{d_1}(x))
b_{c_1}(c_{a_1}(a_{c_1}(x))) → b_{a_1}(a_{c_1}(x))
b_{c_1}(c_{a_1}(a_{b_1}(x))) → b_{a_1}(a_{b_1}(x))
b_{c_1}(c_{a_1}(a_{a_1}(x))) → b_{a_1}(a_{a_1}(x))
b_{c_1}(c_{a_1}(a_{d_1}(x))) → b_{a_1}(a_{d_1}(x))
c_{a_1}(a_{d_1}(d_{c_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))))
c_{a_1}(a_{d_1}(d_{a_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))))
c_{a_1}(a_{d_1}(d_{d_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))))
a_{a_1}(a_{d_1}(d_{c_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))))
a_{a_1}(a_{d_1}(d_{a_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))))
a_{a_1}(a_{d_1}(d_{d_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))))
d_{a_1}(a_{d_1}(d_{c_1}(x))) → d_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))))
d_{a_1}(a_{d_1}(d_{a_1}(x))) → d_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))))
d_{a_1}(a_{d_1}(d_{d_1}(x))) → d_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))))
c_{c_1}(c_{c_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
c_{c_1}(c_{b_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
c_{c_1}(c_{a_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
a_{c_1}(c_{c_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
a_{c_1}(c_{b_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
a_{c_1}(c_{a_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
d_{c_1}(c_{c_1}(x)) → d_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
d_{c_1}(c_{b_1}(x)) → d_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
d_{c_1}(c_{a_1}(x)) → d_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
b_{c_1}(c_{c_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
b_{c_1}(c_{b_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
b_{c_1}(c_{a_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
c_{c_1}(c_{d_1}(d_{c_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
c_{c_1}(c_{d_1}(d_{a_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
c_{c_1}(c_{d_1}(d_{d_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
a_{c_1}(c_{d_1}(d_{c_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
a_{c_1}(c_{d_1}(d_{a_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
a_{c_1}(c_{d_1}(d_{d_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
d_{c_1}(c_{d_1}(d_{c_1}(x))) → d_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
d_{c_1}(c_{d_1}(d_{a_1}(x))) → d_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
d_{c_1}(c_{d_1}(d_{d_1}(x))) → d_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
b_{c_1}(c_{d_1}(d_{c_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
b_{c_1}(c_{d_1}(d_{a_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
b_{c_1}(c_{d_1}(d_{d_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(31) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
C_{B_1}(b_{c_1}(c_{a_1}(a_{b_1}(x)))) → C_{B_1}(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:
POL(C_{B_1}(x1)) = x1
POL(a_{a_1}(x1)) = 0
POL(a_{b_1}(x1)) = x1
POL(a_{c_1}(x1)) = 0
POL(a_{d_1}(x1)) = 0
POL(b_{a_1}(x1)) = 0
POL(b_{b_1}(x1)) = x1
POL(b_{c_1}(x1)) = 1 + x1
POL(c_{a_1}(x1)) = x1
POL(c_{b_1}(x1)) = 0
POL(c_{c_1}(x1)) = x1
POL(c_{d_1}(x1)) = 0
POL(d_{a_1}(x1)) = 0
POL(d_{c_1}(x1)) = 0
POL(d_{d_1}(x1)) = 0
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{c_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{b_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{b_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{d_1}(x))))
b_{c_1}(c_{a_1}(a_{c_1}(x))) → b_{a_1}(a_{c_1}(x))
b_{c_1}(c_{a_1}(a_{b_1}(x))) → b_{a_1}(a_{b_1}(x))
b_{c_1}(c_{a_1}(a_{a_1}(x))) → b_{a_1}(a_{a_1}(x))
b_{c_1}(c_{a_1}(a_{d_1}(x))) → b_{a_1}(a_{d_1}(x))
b_{c_1}(c_{c_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
b_{c_1}(c_{b_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
b_{c_1}(c_{a_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
b_{c_1}(c_{d_1}(d_{c_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
b_{c_1}(c_{d_1}(d_{a_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
b_{c_1}(c_{d_1}(d_{d_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
a_{c_1}(c_{a_1}(a_{c_1}(x))) → a_{a_1}(a_{c_1}(x))
a_{c_1}(c_{a_1}(a_{a_1}(x))) → a_{a_1}(a_{a_1}(x))
a_{c_1}(c_{a_1}(a_{d_1}(x))) → a_{a_1}(a_{d_1}(x))
a_{c_1}(c_{c_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
a_{c_1}(c_{d_1}(d_{c_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
a_{c_1}(c_{d_1}(d_{a_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
a_{c_1}(c_{d_1}(d_{d_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
a_{a_1}(a_{d_1}(d_{c_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))))
a_{a_1}(a_{d_1}(d_{a_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))))
a_{a_1}(a_{d_1}(d_{d_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))))
c_{a_1}(a_{d_1}(d_{c_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))))
c_{a_1}(a_{d_1}(d_{a_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))))
c_{a_1}(a_{d_1}(d_{d_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))))
c_{c_1}(c_{a_1}(a_{c_1}(x))) → c_{a_1}(a_{c_1}(x))
c_{c_1}(c_{a_1}(a_{a_1}(x))) → c_{a_1}(a_{a_1}(x))
c_{c_1}(c_{a_1}(a_{d_1}(x))) → c_{a_1}(a_{d_1}(x))
c_{c_1}(c_{c_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
c_{c_1}(c_{d_1}(d_{c_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
c_{c_1}(c_{d_1}(d_{a_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
c_{c_1}(c_{d_1}(d_{d_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
a_{c_1}(c_{a_1}(a_{b_1}(x))) → a_{a_1}(a_{b_1}(x))
a_{c_1}(c_{b_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
a_{c_1}(c_{a_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
c_{c_1}(c_{a_1}(a_{b_1}(x))) → c_{a_1}(a_{b_1}(x))
c_{c_1}(c_{b_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
c_{c_1}(c_{a_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
(32) Obligation:
Q DP problem:
The TRS P consists of the following rules:
C_{B_1}(b_{c_1}(c_{a_1}(a_{b_1}(x)))) → C_{B_1}(b_{c_1}(c_{b_1}(x)))
The TRS R consists of the following rules:
c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{c_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{b_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{b_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{d_1}(x))))
c_{c_1}(c_{a_1}(a_{c_1}(x))) → c_{a_1}(a_{c_1}(x))
c_{c_1}(c_{a_1}(a_{b_1}(x))) → c_{a_1}(a_{b_1}(x))
c_{c_1}(c_{a_1}(a_{a_1}(x))) → c_{a_1}(a_{a_1}(x))
c_{c_1}(c_{a_1}(a_{d_1}(x))) → c_{a_1}(a_{d_1}(x))
a_{c_1}(c_{a_1}(a_{c_1}(x))) → a_{a_1}(a_{c_1}(x))
a_{c_1}(c_{a_1}(a_{b_1}(x))) → a_{a_1}(a_{b_1}(x))
a_{c_1}(c_{a_1}(a_{a_1}(x))) → a_{a_1}(a_{a_1}(x))
a_{c_1}(c_{a_1}(a_{d_1}(x))) → a_{a_1}(a_{d_1}(x))
d_{c_1}(c_{a_1}(a_{c_1}(x))) → d_{a_1}(a_{c_1}(x))
d_{c_1}(c_{a_1}(a_{b_1}(x))) → d_{a_1}(a_{b_1}(x))
d_{c_1}(c_{a_1}(a_{a_1}(x))) → d_{a_1}(a_{a_1}(x))
d_{c_1}(c_{a_1}(a_{d_1}(x))) → d_{a_1}(a_{d_1}(x))
b_{c_1}(c_{a_1}(a_{c_1}(x))) → b_{a_1}(a_{c_1}(x))
b_{c_1}(c_{a_1}(a_{b_1}(x))) → b_{a_1}(a_{b_1}(x))
b_{c_1}(c_{a_1}(a_{a_1}(x))) → b_{a_1}(a_{a_1}(x))
b_{c_1}(c_{a_1}(a_{d_1}(x))) → b_{a_1}(a_{d_1}(x))
c_{a_1}(a_{d_1}(d_{c_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))))
c_{a_1}(a_{d_1}(d_{a_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))))
c_{a_1}(a_{d_1}(d_{d_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))))
a_{a_1}(a_{d_1}(d_{c_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))))
a_{a_1}(a_{d_1}(d_{a_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))))
a_{a_1}(a_{d_1}(d_{d_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))))
d_{a_1}(a_{d_1}(d_{c_1}(x))) → d_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))))
d_{a_1}(a_{d_1}(d_{a_1}(x))) → d_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))))
d_{a_1}(a_{d_1}(d_{d_1}(x))) → d_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))))
c_{c_1}(c_{c_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
c_{c_1}(c_{b_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
c_{c_1}(c_{a_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
a_{c_1}(c_{c_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
a_{c_1}(c_{b_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
a_{c_1}(c_{a_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
d_{c_1}(c_{c_1}(x)) → d_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
d_{c_1}(c_{b_1}(x)) → d_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
d_{c_1}(c_{a_1}(x)) → d_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
b_{c_1}(c_{c_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
b_{c_1}(c_{b_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
b_{c_1}(c_{a_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
c_{c_1}(c_{d_1}(d_{c_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
c_{c_1}(c_{d_1}(d_{a_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
c_{c_1}(c_{d_1}(d_{d_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
a_{c_1}(c_{d_1}(d_{c_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
a_{c_1}(c_{d_1}(d_{a_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
a_{c_1}(c_{d_1}(d_{d_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
d_{c_1}(c_{d_1}(d_{c_1}(x))) → d_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
d_{c_1}(c_{d_1}(d_{a_1}(x))) → d_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
d_{c_1}(c_{d_1}(d_{d_1}(x))) → d_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
b_{c_1}(c_{d_1}(d_{c_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
b_{c_1}(c_{d_1}(d_{a_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
b_{c_1}(c_{d_1}(d_{d_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(33) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
C_{B_1}(b_{c_1}(c_{a_1}(a_{b_1}(x)))) → C_{B_1}(b_{c_1}(c_{b_1}(x)))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:
POL(C_{B_1}(x1)) = x1
POL(a_{a_1}(x1)) = 0
POL(a_{b_1}(x1)) = 1
POL(a_{c_1}(x1)) = 0
POL(a_{d_1}(x1)) = 0
POL(b_{a_1}(x1)) = 0
POL(b_{b_1}(x1)) = x1
POL(b_{c_1}(x1)) = x1
POL(c_{a_1}(x1)) = x1
POL(c_{b_1}(x1)) = 0
POL(c_{c_1}(x1)) = x1
POL(c_{d_1}(x1)) = 0
POL(d_{a_1}(x1)) = 0
POL(d_{c_1}(x1)) = 0
POL(d_{d_1}(x1)) = 0
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{c_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{b_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{b_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{d_1}(x))))
b_{c_1}(c_{a_1}(a_{c_1}(x))) → b_{a_1}(a_{c_1}(x))
b_{c_1}(c_{a_1}(a_{b_1}(x))) → b_{a_1}(a_{b_1}(x))
b_{c_1}(c_{a_1}(a_{a_1}(x))) → b_{a_1}(a_{a_1}(x))
b_{c_1}(c_{a_1}(a_{d_1}(x))) → b_{a_1}(a_{d_1}(x))
b_{c_1}(c_{c_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
b_{c_1}(c_{b_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
b_{c_1}(c_{a_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
b_{c_1}(c_{d_1}(d_{c_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
b_{c_1}(c_{d_1}(d_{a_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
b_{c_1}(c_{d_1}(d_{d_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
a_{c_1}(c_{a_1}(a_{c_1}(x))) → a_{a_1}(a_{c_1}(x))
a_{c_1}(c_{a_1}(a_{a_1}(x))) → a_{a_1}(a_{a_1}(x))
a_{c_1}(c_{a_1}(a_{d_1}(x))) → a_{a_1}(a_{d_1}(x))
a_{c_1}(c_{c_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
a_{c_1}(c_{d_1}(d_{c_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
a_{c_1}(c_{d_1}(d_{a_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
a_{c_1}(c_{d_1}(d_{d_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
a_{a_1}(a_{d_1}(d_{c_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))))
a_{a_1}(a_{d_1}(d_{a_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))))
a_{a_1}(a_{d_1}(d_{d_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))))
c_{a_1}(a_{d_1}(d_{c_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))))
c_{a_1}(a_{d_1}(d_{a_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))))
c_{a_1}(a_{d_1}(d_{d_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))))
c_{c_1}(c_{a_1}(a_{c_1}(x))) → c_{a_1}(a_{c_1}(x))
c_{c_1}(c_{a_1}(a_{a_1}(x))) → c_{a_1}(a_{a_1}(x))
c_{c_1}(c_{a_1}(a_{d_1}(x))) → c_{a_1}(a_{d_1}(x))
c_{c_1}(c_{c_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
c_{c_1}(c_{d_1}(d_{c_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
c_{c_1}(c_{d_1}(d_{a_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
c_{c_1}(c_{d_1}(d_{d_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
a_{c_1}(c_{a_1}(a_{b_1}(x))) → a_{a_1}(a_{b_1}(x))
a_{c_1}(c_{b_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
a_{c_1}(c_{a_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
c_{c_1}(c_{a_1}(a_{b_1}(x))) → c_{a_1}(a_{b_1}(x))
c_{c_1}(c_{b_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
c_{c_1}(c_{a_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
(34) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{c_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{b_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{b_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x))))
c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x)))) → c_{c_1}(c_{b_1}(b_{c_1}(c_{d_1}(x))))
c_{c_1}(c_{a_1}(a_{c_1}(x))) → c_{a_1}(a_{c_1}(x))
c_{c_1}(c_{a_1}(a_{b_1}(x))) → c_{a_1}(a_{b_1}(x))
c_{c_1}(c_{a_1}(a_{a_1}(x))) → c_{a_1}(a_{a_1}(x))
c_{c_1}(c_{a_1}(a_{d_1}(x))) → c_{a_1}(a_{d_1}(x))
a_{c_1}(c_{a_1}(a_{c_1}(x))) → a_{a_1}(a_{c_1}(x))
a_{c_1}(c_{a_1}(a_{b_1}(x))) → a_{a_1}(a_{b_1}(x))
a_{c_1}(c_{a_1}(a_{a_1}(x))) → a_{a_1}(a_{a_1}(x))
a_{c_1}(c_{a_1}(a_{d_1}(x))) → a_{a_1}(a_{d_1}(x))
d_{c_1}(c_{a_1}(a_{c_1}(x))) → d_{a_1}(a_{c_1}(x))
d_{c_1}(c_{a_1}(a_{b_1}(x))) → d_{a_1}(a_{b_1}(x))
d_{c_1}(c_{a_1}(a_{a_1}(x))) → d_{a_1}(a_{a_1}(x))
d_{c_1}(c_{a_1}(a_{d_1}(x))) → d_{a_1}(a_{d_1}(x))
b_{c_1}(c_{a_1}(a_{c_1}(x))) → b_{a_1}(a_{c_1}(x))
b_{c_1}(c_{a_1}(a_{b_1}(x))) → b_{a_1}(a_{b_1}(x))
b_{c_1}(c_{a_1}(a_{a_1}(x))) → b_{a_1}(a_{a_1}(x))
b_{c_1}(c_{a_1}(a_{d_1}(x))) → b_{a_1}(a_{d_1}(x))
c_{a_1}(a_{d_1}(d_{c_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))))
c_{a_1}(a_{d_1}(d_{a_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))))
c_{a_1}(a_{d_1}(d_{d_1}(x))) → c_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))))
a_{a_1}(a_{d_1}(d_{c_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))))
a_{a_1}(a_{d_1}(d_{a_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))))
a_{a_1}(a_{d_1}(d_{d_1}(x))) → a_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))))
d_{a_1}(a_{d_1}(d_{c_1}(x))) → d_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{c_1}(x))))))
d_{a_1}(a_{d_1}(d_{a_1}(x))) → d_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{a_1}(x))))))
d_{a_1}(a_{d_1}(d_{d_1}(x))) → d_{d_1}(d_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(a_{d_1}(x))))))
c_{c_1}(c_{c_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
c_{c_1}(c_{b_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
c_{c_1}(c_{a_1}(x)) → c_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
a_{c_1}(c_{c_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
a_{c_1}(c_{b_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
a_{c_1}(c_{a_1}(x)) → a_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
d_{c_1}(c_{c_1}(x)) → d_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
d_{c_1}(c_{b_1}(x)) → d_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
d_{c_1}(c_{a_1}(x)) → d_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
b_{c_1}(c_{c_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{c_1}(x))))
b_{c_1}(c_{b_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{b_1}(x))))
b_{c_1}(c_{a_1}(x)) → b_{a_1}(a_{a_1}(a_{b_1}(b_{a_1}(x))))
c_{c_1}(c_{d_1}(d_{c_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
c_{c_1}(c_{d_1}(d_{a_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
c_{c_1}(c_{d_1}(d_{d_1}(x))) → c_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
a_{c_1}(c_{d_1}(d_{c_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
a_{c_1}(c_{d_1}(d_{a_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
a_{c_1}(c_{d_1}(d_{d_1}(x))) → a_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
d_{c_1}(c_{d_1}(d_{c_1}(x))) → d_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
d_{c_1}(c_{d_1}(d_{a_1}(x))) → d_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
d_{c_1}(c_{d_1}(d_{d_1}(x))) → d_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
b_{c_1}(c_{d_1}(d_{c_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{c_1}(x)))))
b_{c_1}(c_{d_1}(d_{a_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{a_1}(x)))))
b_{c_1}(c_{d_1}(d_{d_1}(x))) → b_{a_1}(a_{d_1}(d_{c_1}(c_{a_1}(a_{d_1}(x)))))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(35) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(36) YES