YES
0 QTRS
↳1 QTRS Reverse (⇔, 0 ms)
↳2 QTRS
↳3 DependencyPairsProof (⇔, 0 ms)
↳4 QDP
↳5 QDPOrderProof (⇔, 24 ms)
↳6 QDP
↳7 QDPOrderProof (⇔, 5250 ms)
↳8 QDP
↳9 DependencyGraphProof (⇔, 0 ms)
↳10 TRUE
a(a(b(x))) → b(a(a(a(x))))
b(a(b(a(x)))) → a(b(b(x)))
b(a(a(x))) → a(a(a(b(x))))
a(b(a(b(x)))) → b(b(a(x)))
B(a(a(x))) → A(a(a(b(x))))
B(a(a(x))) → A(a(b(x)))
B(a(a(x))) → A(b(x))
B(a(a(x))) → B(x)
A(b(a(b(x)))) → B(b(a(x)))
A(b(a(b(x)))) → B(a(x))
A(b(a(b(x)))) → A(x)
b(a(a(x))) → a(a(a(b(x))))
a(b(a(b(x)))) → b(b(a(x)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
A(b(a(b(x)))) → B(a(x))
A(b(a(b(x)))) → A(x)
POL(A(x1)) = x1
POL(B(x1)) = 1 + x1
POL(a(x1)) = x1
POL(b(x1)) = 1 + x1
a(b(a(b(x)))) → b(b(a(x)))
b(a(a(x))) → a(a(a(b(x))))
B(a(a(x))) → A(a(a(b(x))))
B(a(a(x))) → A(a(b(x)))
B(a(a(x))) → A(b(x))
B(a(a(x))) → B(x)
A(b(a(b(x)))) → B(b(a(x)))
b(a(a(x))) → a(a(a(b(x))))
a(b(a(b(x)))) → b(b(a(x)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
B(a(a(x))) → A(a(b(x)))
B(a(a(x))) → A(b(x))
B(a(a(x))) → B(x)
A(b(a(b(x)))) → B(b(a(x)))
The value of delta used in the strict ordering is 1/32.
POL(A(x1)) = [1/2] + [1/2]x1
POL(B(x1)) = [1/2] + [3/4]x1
POL(a(x1)) = [1/4] + x1
POL(b(x1)) = [1/4] + [3/2]x1
a(b(a(b(x)))) → b(b(a(x)))
b(a(a(x))) → a(a(a(b(x))))
B(a(a(x))) → A(a(a(b(x))))
b(a(a(x))) → a(a(a(b(x))))
a(b(a(b(x)))) → b(b(a(x)))