YES
by ttt2 (version ttt2 1.15)
The rewrite relation of the following TRS is considered.
twoto(0(x0)) | → | p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x0)))))))))))))))) |
twoto(s(x0)) | → | p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x0)))))))))))))))))))))))))) |
twice(0(x0)) | → | p(s(p(s(0(s(p(s(s(s(s(p(s(x0))))))))))))) |
twice(s(x0)) | → | s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x0))))))))))))))))))) |
p(p(s(x0))) | → | p(x0) |
p(s(x0)) | → | x0 |
p(0(x0)) | → | 0(s(s(s(s(p(s(x0))))))) |
0(x0) | → | x0 |
[twice(x1)] | = | 0 · x1 + -∞ |
[twoto(x1)] | = | 0 · x1 + -∞ |
[p(x1)] | = | 0 · x1 + -∞ |
[0(x1)] | = | 1 · x1 + -∞ |
[s(x1)] | = | 0 · x1 + -∞ |
twoto(0(x0)) | → | p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x0)))))))))))))))) |
twoto(s(x0)) | → | p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x0)))))))))))))))))))))))))) |
twice(0(x0)) | → | p(s(p(s(0(s(p(s(s(s(s(p(s(x0))))))))))))) |
twice(s(x0)) | → | s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x0))))))))))))))))))) |
p(p(s(x0))) | → | p(x0) |
p(s(x0)) | → | x0 |
p(0(x0)) | → | 0(s(s(s(s(p(s(x0))))))) |
[twice(x1)] | = | 0 · x1 + -∞ |
[twoto(x1)] | = | 14 · x1 + -∞ |
[p(x1)] | = | 0 · x1 + -∞ |
[0(x1)] | = | 0 · x1 + -∞ |
[s(x1)] | = | 0 · x1 + -∞ |
twoto(s(x0)) | → | p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x0)))))))))))))))))))))))))) |
twice(0(x0)) | → | p(s(p(s(0(s(p(s(s(s(s(p(s(x0))))))))))))) |
twice(s(x0)) | → | s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x0))))))))))))))))))) |
p(p(s(x0))) | → | p(x0) |
p(s(x0)) | → | x0 |
p(0(x0)) | → | 0(s(s(s(s(p(s(x0))))))) |
final states:
{54, 2, 53, 38, 28, 1}
transitions:
78 | → | 24 |
25 | → | 71 |
25 | → | 27 |
80 | → | 51 |
18 | → | 78 |
9 | → | 63 |
9 | → | 11 |
34 | → | 36 |
34 | → | 53 |
20 | → | 61 |
20 | → | 22 |
62 | → | 23 |
1 | → | 70 |
1 | → | 13 |
1 | → | 86 |
1 | → | 7 |
40 | → | 42 |
8 | → | 85 |
8 | → | 64 |
13 | → | 17 |
13 | → | 70 |
44 | → | 52 |
44 | → | 88 |
38 | → | 43 |
86 | → | 13 |
36 | → | 28 |
72 | → | 1 |
6 | → | 40 |
88 | → | 52 |
2 | → | 4 |
2 | → | 53 |
4 | → | 6 |
28 | → | 43 |
45 | → | 87 |
45 | → | 51 |
45 | → | 80 |
14 | → | 69 |
14 | → | 16 |
7 | → | 86 |
30 | → | 32 |
64 | → | 12 |
46 | → | 79 |
46 | → | 56 |
47 | → | 55 |
47 | → | 49 |
24 | → | 1 |
24 | → | 72 |
19 | → | 77 |
19 | → | 23 |
19 | → | 62 |
70 | → | 17 |
56 | → | 50 |
twoto0(6) | → | 7 |
00(31) | → | 54 |
00(33) | → | 34 |
twice0(42) | → | 43 |
twice0(17) | → | 18 |
p1(87) | → | 88 |
p1(61) | → | 62 |
p1(63) | → | 64 |
p1(69) | → | 70 |
p1(85) | → | 86 |
p1(79) | → | 80 |
p1(77) | → | 78 |
p1(55) | → | 56 |
p1(71) | → | 72 |
p0(11) | → | 12 |
p0(22) | → | 23 |
p0(37) | → | 28 |
p0(50) | → | 51 |
p0(3) | → | 4 |
p0(51) | → | 52 |
p0(15) | → | 16 |
p0(5) | → | 6 |
p0(23) | → | 24 |
p0(26) | → | 27 |
p0(16) | → | 17 |
p0(39) | → | 40 |
p0(49) | → | 50 |
p0(10) | → | 11 |
p0(2) | → | 53 |
p0(31) | → | 32 |
p0(48) | → | 49 |
p0(27) | → | 1 |
p0(12) | → | 13 |
p0(35) | → | 36 |
p0(21) | → | 22 |
p0(41) | → | 42 |
s0(2) | → | 3 |
s0(18) | → | 19 |
s0(46) | → | 47 |
s0(9) | → | 10 |
s0(19) | → | 20 |
s0(30) | → | 31 |
s0(36) | → | 37 |
s0(24) | → | 25 |
s0(25) | → | 26 |
s0(43) | → | 44 |
s0(4) | → | 5 |
s0(8) | → | 9 |
s0(6) | → | 39 |
s0(14) | → | 15 |
s0(32) | → | 33 |
s0(29) | → | 30 |
s0(7) | → | 8 |
s0(52) | → | 38 |
s0(45) | → | 46 |
s0(20) | → | 21 |
s0(40) | → | 41 |
s0(34) | → | 35 |
s0(44) | → | 45 |
s0(5) | → | 29 |
s0(13) | → | 14 |
s0(47) | → | 48 |
f50 | → | 2 |