YES Termination Proof

Termination Proof

by ttt2 (version ttt2 1.15)

Input

The rewrite relation of the following TRS is considered.

twoto(0(x0)) p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x0))))))))))))))))
twoto(s(x0)) p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x0))))))))))))))))))))))))))
twice(0(x0)) p(s(p(s(0(s(p(s(s(s(s(p(s(x0)))))))))))))
twice(s(x0)) s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x0)))))))))))))))))))
p(p(s(x0))) p(x0)
p(s(x0)) x0
p(0(x0)) 0(s(s(s(s(p(s(x0)))))))
0(x0) x0

Proof

1 Rule Removal

Using the linear polynomial interpretation over the arctic semiring over the integers
[twice(x1)] = 0 · x1 + -∞
[twoto(x1)] = 0 · x1 + -∞
[p(x1)] = 0 · x1 + -∞
[0(x1)] = 1 · x1 + -∞
[s(x1)] = 0 · x1 + -∞
the rules
twoto(0(x0)) p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x0))))))))))))))))
twoto(s(x0)) p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x0))))))))))))))))))))))))))
twice(0(x0)) p(s(p(s(0(s(p(s(s(s(s(p(s(x0)))))))))))))
twice(s(x0)) s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x0)))))))))))))))))))
p(p(s(x0))) p(x0)
p(s(x0)) x0
p(0(x0)) 0(s(s(s(s(p(s(x0)))))))
remain.

1.1 Rule Removal

Using the linear polynomial interpretation over the arctic semiring over the integers
[twice(x1)] = 0 · x1 + -∞
[twoto(x1)] = 14 · x1 + -∞
[p(x1)] = 0 · x1 + -∞
[0(x1)] = 0 · x1 + -∞
[s(x1)] = 0 · x1 + -∞
the rules
twoto(s(x0)) p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x0))))))))))))))))))))))))))
twice(0(x0)) p(s(p(s(0(s(p(s(s(s(s(p(s(x0)))))))))))))
twice(s(x0)) s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x0)))))))))))))))))))
p(p(s(x0))) p(x0)
p(s(x0)) x0
p(0(x0)) 0(s(s(s(s(p(s(x0)))))))
remain.

1.1.1 Bounds

The given TRS is match-bounded by 1. This is shown by the following automaton.