MAYBE Termination Proof

Termination Proof

by ttt2 (version ttt2 1.15)

Input

The rewrite relation of the following TRS is considered.

Begin(s(x0)) Wait(Right1(x0))
Begin(s(x0)) Wait(Right2(x0))
Begin(p(s(x0))) Wait(Right3(x0))
Begin(s(x0)) Wait(Right4(x0))
Begin(s(x0)) Wait(Right5(x0))
Begin(0(x0)) Wait(Right6(x0))
Right1(sq(End(x0))) Left(s(p(s(p(s(p(p(s(s(twice(p(s(p(s(p(p(p(s(s(s(sq(p(p(p(p(p(p(s(s(s(s(s(s(End(x0)))))))))))))))))))))))))))))))))))
Right2(twice(End(x0))) Left(p(p(s(s(s(p(p(s(s(s(twice(p(s(p(s(End(x0)))))))))))))))))
Right3(p(End(x0))) Left(p(End(x0)))
Right4(p(p(End(x0)))) Left(p(End(x0)))
Right5(p(End(x0))) Left(End(x0))
Right6(p(End(x0))) Left(0(s(s(s(s(s(s(s(s(s(s(s(End(x0))))))))))))))
Right1(sq(x0)) Asq(Right1(x0))
Right2(sq(x0)) Asq(Right2(x0))
Right3(sq(x0)) Asq(Right3(x0))
Right4(sq(x0)) Asq(Right4(x0))
Right5(sq(x0)) Asq(Right5(x0))
Right6(sq(x0)) Asq(Right6(x0))
Right1(s(x0)) As(Right1(x0))
Right2(s(x0)) As(Right2(x0))
Right3(s(x0)) As(Right3(x0))
Right4(s(x0)) As(Right4(x0))
Right5(s(x0)) As(Right5(x0))
Right6(s(x0)) As(Right6(x0))
Right1(p(x0)) Ap(Right1(x0))
Right2(p(x0)) Ap(Right2(x0))
Right3(p(x0)) Ap(Right3(x0))
Right4(p(x0)) Ap(Right4(x0))
Right5(p(x0)) Ap(Right5(x0))
Right6(p(x0)) Ap(Right6(x0))
Right1(twice(x0)) Atwice(Right1(x0))
Right2(twice(x0)) Atwice(Right2(x0))
Right3(twice(x0)) Atwice(Right3(x0))
Right4(twice(x0)) Atwice(Right4(x0))
Right5(twice(x0)) Atwice(Right5(x0))
Right6(twice(x0)) Atwice(Right6(x0))
Right1(0(x0)) A0(Right1(x0))
Right2(0(x0)) A0(Right2(x0))
Right3(0(x0)) A0(Right3(x0))
Right4(0(x0)) A0(Right4(x0))
Right5(0(x0)) A0(Right5(x0))
Right6(0(x0)) A0(Right6(x0))
Asq(Left(x0)) Left(sq(x0))
As(Left(x0)) Left(s(x0))
Ap(Left(x0)) Left(p(x0))
Atwice(Left(x0)) Left(twice(x0))
A0(Left(x0)) Left(0(x0))
Wait(Left(x0)) Begin(x0)
sq(s(x0)) s(p(s(p(s(p(p(s(s(twice(p(s(p(s(p(p(p(s(s(s(sq(p(p(p(p(p(p(s(s(s(s(s(s(x0)))))))))))))))))))))))))))))))))
twice(s(x0)) p(p(s(s(s(p(p(s(s(s(twice(p(s(p(s(x0)))))))))))))))
p(p(s(x0))) p(x0)
p(s(x0)) x0
p(0(x0)) 0(s(s(s(s(s(s(s(s(s(s(s(x0))))))))))))

Proof

1 Termination Assumption

We assume termination of the following TRS
Begin(s(x0)) Wait(Right1(x0))
Begin(s(x0)) Wait(Right2(x0))
Begin(p(s(x0))) Wait(Right3(x0))
Begin(s(x0)) Wait(Right4(x0))
Begin(s(x0)) Wait(Right5(x0))
Begin(0(x0)) Wait(Right6(x0))
Right1(sq(End(x0))) Left(s(p(s(p(s(p(p(s(s(twice(p(s(p(s(p(p(p(s(s(s(sq(p(p(p(p(p(p(s(s(s(s(s(s(End(x0)))))))))))))))))))))))))))))))))))
Right2(twice(End(x0))) Left(p(p(s(s(s(p(p(s(s(s(twice(p(s(p(s(End(x0)))))))))))))))))
Right3(p(End(x0))) Left(p(End(x0)))
Right4(p(p(End(x0)))) Left(p(End(x0)))
Right5(p(End(x0))) Left(End(x0))
Right6(p(End(x0))) Left(0(s(s(s(s(s(s(s(s(s(s(s(End(x0))))))))))))))
Right1(sq(x0)) Asq(Right1(x0))
Right2(sq(x0)) Asq(Right2(x0))
Right3(sq(x0)) Asq(Right3(x0))
Right4(sq(x0)) Asq(Right4(x0))
Right5(sq(x0)) Asq(Right5(x0))
Right6(sq(x0)) Asq(Right6(x0))
Right1(s(x0)) As(Right1(x0))
Right2(s(x0)) As(Right2(x0))
Right3(s(x0)) As(Right3(x0))
Right4(s(x0)) As(Right4(x0))
Right5(s(x0)) As(Right5(x0))
Right6(s(x0)) As(Right6(x0))
Right1(p(x0)) Ap(Right1(x0))
Right2(p(x0)) Ap(Right2(x0))
Right3(p(x0)) Ap(Right3(x0))
Right4(p(x0)) Ap(Right4(x0))
Right5(p(x0)) Ap(Right5(x0))
Right6(p(x0)) Ap(Right6(x0))
Right1(twice(x0)) Atwice(Right1(x0))
Right2(twice(x0)) Atwice(Right2(x0))
Right3(twice(x0)) Atwice(Right3(x0))
Right4(twice(x0)) Atwice(Right4(x0))
Right5(twice(x0)) Atwice(Right5(x0))
Right6(twice(x0)) Atwice(Right6(x0))
Right1(0(x0)) A0(Right1(x0))
Right2(0(x0)) A0(Right2(x0))
Right3(0(x0)) A0(Right3(x0))
Right4(0(x0)) A0(Right4(x0))
Right5(0(x0)) A0(Right5(x0))
Right6(0(x0)) A0(Right6(x0))
Asq(Left(x0)) Left(sq(x0))
As(Left(x0)) Left(s(x0))
Ap(Left(x0)) Left(p(x0))
Atwice(Left(x0)) Left(twice(x0))
A0(Left(x0)) Left(0(x0))
Wait(Left(x0)) Begin(x0)
sq(s(x0)) s(p(s(p(s(p(p(s(s(twice(p(s(p(s(p(p(p(s(s(s(sq(p(p(p(p(p(p(s(s(s(s(s(s(x0)))))))))))))))))))))))))))))))))
twice(s(x0)) p(p(s(s(s(p(p(s(s(s(twice(p(s(p(s(x0)))))))))))))))
p(p(s(x0))) p(x0)
p(s(x0)) x0
p(0(x0)) 0(s(s(s(s(s(s(s(s(s(s(s(x0))))))))))))