YES Termination w.r.t. Q proof of /home/cern_httpd/provide/research/cycsrs/tpdb/TPDB-d9b80194f163/SRS_Standard/Secret_06_SRS/aprove04.srs

(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

sq(0(x)) → p(s(p(s(p(p(p(p(s(s(s(s(0(p(s(p(s(x)))))))))))))))))
sq(s(x)) → s(p(s(p(s(p(p(s(s(twice(p(s(p(s(p(p(p(s(s(s(sq(p(p(p(p(p(p(s(s(s(s(s(s(x)))))))))))))))))))))))))))))))))
twice(0(x)) → p(p(p(p(s(s(p(s(s(s(0(p(p(p(s(s(s(p(p(s(s(p(s(p(s(p(s(x)))))))))))))))))))))))))))
twice(s(x)) → p(p(s(s(s(p(p(s(s(s(twice(p(s(p(s(x)))))))))))))))
p(p(s(x))) → p(x)
p(s(x)) → x
p(0(x)) → 0(s(s(s(s(s(s(s(s(s(s(s(x))))))))))))
0(x) → x

Q is empty.

(1) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Polynomial interpretation [POLO]:

POL(0(x1)) = 1 + x1   
POL(p(x1)) = x1   
POL(s(x1)) = x1   
POL(sq(x1)) = 1 + x1   
POL(twice(x1)) = x1   
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

sq(0(x)) → p(s(p(s(p(p(p(p(s(s(s(s(0(p(s(p(s(x)))))))))))))))))
0(x) → x


(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

sq(s(x)) → s(p(s(p(s(p(p(s(s(twice(p(s(p(s(p(p(p(s(s(s(sq(p(p(p(p(p(p(s(s(s(s(s(s(x)))))))))))))))))))))))))))))))))
twice(0(x)) → p(p(p(p(s(s(p(s(s(s(0(p(p(p(s(s(s(p(p(s(s(p(s(p(s(p(s(x)))))))))))))))))))))))))))
twice(s(x)) → p(p(s(s(s(p(p(s(s(s(twice(p(s(p(s(x)))))))))))))))
p(p(s(x))) → p(x)
p(s(x)) → x
p(0(x)) → 0(s(s(s(s(s(s(s(s(s(s(s(x))))))))))))

Q is empty.

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SQ(s(x)) → P(s(p(s(p(p(s(s(twice(p(s(p(s(p(p(p(s(s(s(sq(p(p(p(p(p(p(s(s(s(s(s(s(x))))))))))))))))))))))))))))))))
SQ(s(x)) → P(s(p(p(s(s(twice(p(s(p(s(p(p(p(s(s(s(sq(p(p(p(p(p(p(s(s(s(s(s(s(x))))))))))))))))))))))))))))))
SQ(s(x)) → P(p(s(s(twice(p(s(p(s(p(p(p(s(s(s(sq(p(p(p(p(p(p(s(s(s(s(s(s(x))))))))))))))))))))))))))))
SQ(s(x)) → P(s(s(twice(p(s(p(s(p(p(p(s(s(s(sq(p(p(p(p(p(p(s(s(s(s(s(s(x)))))))))))))))))))))))))))
SQ(s(x)) → TWICE(p(s(p(s(p(p(p(s(s(s(sq(p(p(p(p(p(p(s(s(s(s(s(s(x))))))))))))))))))))))))
SQ(s(x)) → P(s(p(s(p(p(p(s(s(s(sq(p(p(p(p(p(p(s(s(s(s(s(s(x)))))))))))))))))))))))
SQ(s(x)) → P(s(p(p(p(s(s(s(sq(p(p(p(p(p(p(s(s(s(s(s(s(x)))))))))))))))))))))
SQ(s(x)) → P(p(p(s(s(s(sq(p(p(p(p(p(p(s(s(s(s(s(s(x)))))))))))))))))))
SQ(s(x)) → P(p(s(s(s(sq(p(p(p(p(p(p(s(s(s(s(s(s(x))))))))))))))))))
SQ(s(x)) → P(s(s(s(sq(p(p(p(p(p(p(s(s(s(s(s(s(x)))))))))))))))))
SQ(s(x)) → SQ(p(p(p(p(p(p(s(s(s(s(s(s(x)))))))))))))
SQ(s(x)) → P(p(p(p(p(p(s(s(s(s(s(s(x))))))))))))
SQ(s(x)) → P(p(p(p(p(s(s(s(s(s(s(x)))))))))))
SQ(s(x)) → P(p(p(p(s(s(s(s(s(s(x))))))))))
SQ(s(x)) → P(p(p(s(s(s(s(s(s(x)))))))))
SQ(s(x)) → P(p(s(s(s(s(s(s(x))))))))
SQ(s(x)) → P(s(s(s(s(s(s(x)))))))
TWICE(0(x)) → P(p(p(p(s(s(p(s(s(s(0(p(p(p(s(s(s(p(p(s(s(p(s(p(s(p(s(x)))))))))))))))))))))))))))
TWICE(0(x)) → P(p(p(s(s(p(s(s(s(0(p(p(p(s(s(s(p(p(s(s(p(s(p(s(p(s(x))))))))))))))))))))))))))
TWICE(0(x)) → P(p(s(s(p(s(s(s(0(p(p(p(s(s(s(p(p(s(s(p(s(p(s(p(s(x)))))))))))))))))))))))))
TWICE(0(x)) → P(s(s(p(s(s(s(0(p(p(p(s(s(s(p(p(s(s(p(s(p(s(p(s(x))))))))))))))))))))))))
TWICE(0(x)) → P(s(s(s(0(p(p(p(s(s(s(p(p(s(s(p(s(p(s(p(s(x)))))))))))))))))))))
TWICE(0(x)) → P(p(p(s(s(s(p(p(s(s(p(s(p(s(p(s(x))))))))))))))))
TWICE(0(x)) → P(p(s(s(s(p(p(s(s(p(s(p(s(p(s(x)))))))))))))))
TWICE(0(x)) → P(s(s(s(p(p(s(s(p(s(p(s(p(s(x))))))))))))))
TWICE(0(x)) → P(p(s(s(p(s(p(s(p(s(x))))))))))
TWICE(0(x)) → P(s(s(p(s(p(s(p(s(x)))))))))
TWICE(0(x)) → P(s(p(s(p(s(x))))))
TWICE(0(x)) → P(s(p(s(x))))
TWICE(0(x)) → P(s(x))
TWICE(s(x)) → P(p(s(s(s(p(p(s(s(s(twice(p(s(p(s(x)))))))))))))))
TWICE(s(x)) → P(s(s(s(p(p(s(s(s(twice(p(s(p(s(x))))))))))))))
TWICE(s(x)) → P(p(s(s(s(twice(p(s(p(s(x))))))))))
TWICE(s(x)) → P(s(s(s(twice(p(s(p(s(x)))))))))
TWICE(s(x)) → TWICE(p(s(p(s(x)))))
TWICE(s(x)) → P(s(p(s(x))))
TWICE(s(x)) → P(s(x))
P(p(s(x))) → P(x)

The TRS R consists of the following rules:

sq(s(x)) → s(p(s(p(s(p(p(s(s(twice(p(s(p(s(p(p(p(s(s(s(sq(p(p(p(p(p(p(s(s(s(s(s(s(x)))))))))))))))))))))))))))))))))
twice(0(x)) → p(p(p(p(s(s(p(s(s(s(0(p(p(p(s(s(s(p(p(s(s(p(s(p(s(p(s(x)))))))))))))))))))))))))))
twice(s(x)) → p(p(s(s(s(p(p(s(s(s(twice(p(s(p(s(x)))))))))))))))
p(p(s(x))) → p(x)
p(s(x)) → x
p(0(x)) → 0(s(s(s(s(s(s(s(s(s(s(s(x))))))))))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 35 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P(p(s(x))) → P(x)

The TRS R consists of the following rules:

sq(s(x)) → s(p(s(p(s(p(p(s(s(twice(p(s(p(s(p(p(p(s(s(s(sq(p(p(p(p(p(p(s(s(s(s(s(s(x)))))))))))))))))))))))))))))))))
twice(0(x)) → p(p(p(p(s(s(p(s(s(s(0(p(p(p(s(s(s(p(p(s(s(p(s(p(s(p(s(x)))))))))))))))))))))))))))
twice(s(x)) → p(p(s(s(s(p(p(s(s(s(twice(p(s(p(s(x)))))))))))))))
p(p(s(x))) → p(x)
p(s(x)) → x
p(0(x)) → 0(s(s(s(s(s(s(s(s(s(s(s(x))))))))))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P(p(s(x))) → P(x)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • P(p(s(x))) → P(x)
    The graph contains the following edges 1 > 1

(11) YES

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TWICE(s(x)) → TWICE(p(s(p(s(x)))))

The TRS R consists of the following rules:

sq(s(x)) → s(p(s(p(s(p(p(s(s(twice(p(s(p(s(p(p(p(s(s(s(sq(p(p(p(p(p(p(s(s(s(s(s(s(x)))))))))))))))))))))))))))))))))
twice(0(x)) → p(p(p(p(s(s(p(s(s(s(0(p(p(p(s(s(s(p(p(s(s(p(s(p(s(p(s(x)))))))))))))))))))))))))))
twice(s(x)) → p(p(s(s(s(p(p(s(s(s(twice(p(s(p(s(x)))))))))))))))
p(p(s(x))) → p(x)
p(s(x)) → x
p(0(x)) → 0(s(s(s(s(s(s(s(s(s(s(s(x))))))))))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) MNOCProof (EQUIVALENT transformation)

We use the modular non-overlap check [LPAR04] to enlarge Q to all left-hand sides of R.

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TWICE(s(x)) → TWICE(p(s(p(s(x)))))

The TRS R consists of the following rules:

sq(s(x)) → s(p(s(p(s(p(p(s(s(twice(p(s(p(s(p(p(p(s(s(s(sq(p(p(p(p(p(p(s(s(s(s(s(s(x)))))))))))))))))))))))))))))))))
twice(0(x)) → p(p(p(p(s(s(p(s(s(s(0(p(p(p(s(s(s(p(p(s(s(p(s(p(s(p(s(x)))))))))))))))))))))))))))
twice(s(x)) → p(p(s(s(s(p(p(s(s(s(twice(p(s(p(s(x)))))))))))))))
p(p(s(x))) → p(x)
p(s(x)) → x
p(0(x)) → 0(s(s(s(s(s(s(s(s(s(s(s(x))))))))))))

The set Q consists of the following terms:

sq(s(x0))
twice(0(x0))
twice(s(x0))
p(s(x0))
p(0(x0))

We have to consider all minimal (P,Q,R)-chains.

(15) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TWICE(s(x)) → TWICE(p(s(p(s(x)))))

The TRS R consists of the following rules:

p(s(x)) → x

The set Q consists of the following terms:

sq(s(x0))
twice(0(x0))
twice(s(x0))
p(s(x0))
p(0(x0))

We have to consider all minimal (P,Q,R)-chains.

(17) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

sq(s(x0))
twice(0(x0))
twice(s(x0))

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TWICE(s(x)) → TWICE(p(s(p(s(x)))))

The TRS R consists of the following rules:

p(s(x)) → x

The set Q consists of the following terms:

p(s(x0))
p(0(x0))

We have to consider all minimal (P,Q,R)-chains.

(19) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


TWICE(s(x)) → TWICE(p(s(p(s(x)))))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( TWICE(x1) ) = x1 + 2

POL( p(x1) ) = max{0, x1 - 1}

POL( s(x1) ) = x1 + 1


The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

p(s(x)) → x

(20) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

p(s(x)) → x

The set Q consists of the following terms:

p(s(x0))
p(0(x0))

We have to consider all minimal (P,Q,R)-chains.

(21) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(22) YES

(23) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SQ(s(x)) → SQ(p(p(p(p(p(p(s(s(s(s(s(s(x)))))))))))))

The TRS R consists of the following rules:

sq(s(x)) → s(p(s(p(s(p(p(s(s(twice(p(s(p(s(p(p(p(s(s(s(sq(p(p(p(p(p(p(s(s(s(s(s(s(x)))))))))))))))))))))))))))))))))
twice(0(x)) → p(p(p(p(s(s(p(s(s(s(0(p(p(p(s(s(s(p(p(s(s(p(s(p(s(p(s(x)))))))))))))))))))))))))))
twice(s(x)) → p(p(s(s(s(p(p(s(s(s(twice(p(s(p(s(x)))))))))))))))
p(p(s(x))) → p(x)
p(s(x)) → x
p(0(x)) → 0(s(s(s(s(s(s(s(s(s(s(s(x))))))))))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) MNOCProof (EQUIVALENT transformation)

We use the modular non-overlap check [LPAR04] to enlarge Q to all left-hand sides of R.

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SQ(s(x)) → SQ(p(p(p(p(p(p(s(s(s(s(s(s(x)))))))))))))

The TRS R consists of the following rules:

sq(s(x)) → s(p(s(p(s(p(p(s(s(twice(p(s(p(s(p(p(p(s(s(s(sq(p(p(p(p(p(p(s(s(s(s(s(s(x)))))))))))))))))))))))))))))))))
twice(0(x)) → p(p(p(p(s(s(p(s(s(s(0(p(p(p(s(s(s(p(p(s(s(p(s(p(s(p(s(x)))))))))))))))))))))))))))
twice(s(x)) → p(p(s(s(s(p(p(s(s(s(twice(p(s(p(s(x)))))))))))))))
p(p(s(x))) → p(x)
p(s(x)) → x
p(0(x)) → 0(s(s(s(s(s(s(s(s(s(s(s(x))))))))))))

The set Q consists of the following terms:

sq(s(x0))
twice(0(x0))
twice(s(x0))
p(s(x0))
p(0(x0))

We have to consider all minimal (P,Q,R)-chains.

(26) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SQ(s(x)) → SQ(p(p(p(p(p(p(s(s(s(s(s(s(x)))))))))))))

The TRS R consists of the following rules:

p(s(x)) → x
p(0(x)) → 0(s(s(s(s(s(s(s(s(s(s(s(x))))))))))))

The set Q consists of the following terms:

sq(s(x0))
twice(0(x0))
twice(s(x0))
p(s(x0))
p(0(x0))

We have to consider all minimal (P,Q,R)-chains.

(28) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

sq(s(x0))
twice(0(x0))
twice(s(x0))

(29) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SQ(s(x)) → SQ(p(p(p(p(p(p(s(s(s(s(s(s(x)))))))))))))

The TRS R consists of the following rules:

p(s(x)) → x
p(0(x)) → 0(s(s(s(s(s(s(s(s(s(s(s(x))))))))))))

The set Q consists of the following terms:

p(s(x0))
p(0(x0))

We have to consider all minimal (P,Q,R)-chains.

(30) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


SQ(s(x)) → SQ(p(p(p(p(p(p(s(s(s(s(s(s(x)))))))))))))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( SQ(x1) ) = 2x1 + 2

POL( p(x1) ) = max{0, x1 - 2}

POL( s(x1) ) = x1 + 2

POL( 0(x1) ) = max{0, -2}


The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

p(s(x)) → x
p(0(x)) → 0(s(s(s(s(s(s(s(s(s(s(s(x))))))))))))

(31) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

p(s(x)) → x
p(0(x)) → 0(s(s(s(s(s(s(s(s(s(s(s(x))))))))))))

The set Q consists of the following terms:

p(s(x0))
p(0(x0))

We have to consider all minimal (P,Q,R)-chains.

(32) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(33) YES