YES Termination Proof

Termination Proof

by ttt2 (version ttt2 1.15)

Input

The rewrite relation of the following TRS is considered.

thrice(0(x0)) p(s(p(p(p(s(s(s(0(p(s(p(s(x0)))))))))))))
thrice(s(x0)) p(p(s(s(half(p(p(s(s(p(s(sixtimes(p(s(p(p(s(s(x0))))))))))))))))))
half(0(x0)) p(p(s(s(p(s(0(p(s(s(s(s(x0))))))))))))
half(s(x0)) p(s(p(p(s(s(p(p(s(s(half(p(p(s(s(p(s(x0)))))))))))))))))
half(s(s(x0))) p(s(p(s(s(p(p(s(s(half(p(p(s(s(p(s(x0))))))))))))))))
sixtimes(0(x0)) p(s(p(s(0(s(s(s(s(s(p(s(p(s(x0))))))))))))))
sixtimes(s(x0)) p(p(s(s(s(s(s(s(s(p(p(s(p(s(s(s(sixtimes(p(s(p(p(p(s(s(s(x0)))))))))))))))))))))))))
p(p(s(x0))) p(x0)
p(s(x0)) x0
p(0(x0)) 0(s(s(s(s(x0)))))
0(x0) x0

Proof

1 Rule Removal

Using the linear polynomial interpretation over the arctic semiring over the integers
[sixtimes(x1)] = 0 · x1 + -∞
[thrice(x1)] = 2 · x1 + -∞
[p(x1)] = 0 · x1 + -∞
[half(x1)] = 1 · x1 + -∞
[0(x1)] = 0 · x1 + -∞
[s(x1)] = 0 · x1 + -∞
the rules
half(s(x0)) p(s(p(p(s(s(p(p(s(s(half(p(p(s(s(p(s(x0)))))))))))))))))
half(s(s(x0))) p(s(p(s(s(p(p(s(s(half(p(p(s(s(p(s(x0))))))))))))))))
sixtimes(0(x0)) p(s(p(s(0(s(s(s(s(s(p(s(p(s(x0))))))))))))))
sixtimes(s(x0)) p(p(s(s(s(s(s(s(s(p(p(s(p(s(s(s(sixtimes(p(s(p(p(p(s(s(s(x0)))))))))))))))))))))))))
p(p(s(x0))) p(x0)
p(s(x0)) x0
p(0(x0)) 0(s(s(s(s(x0)))))
0(x0) x0
remain.

1.1 Rule Removal

Using the linear polynomial interpretation over the arctic semiring over the integers
[sixtimes(x1)] = 4 · x1 + -∞
[p(x1)] = 0 · x1 + -∞
[half(x1)] = 1 · x1 + -∞
[0(x1)] = 1 · x1 + -∞
[s(x1)] = 0 · x1 + -∞
the rules
half(s(x0)) p(s(p(p(s(s(p(p(s(s(half(p(p(s(s(p(s(x0)))))))))))))))))
half(s(s(x0))) p(s(p(s(s(p(p(s(s(half(p(p(s(s(p(s(x0))))))))))))))))
sixtimes(s(x0)) p(p(s(s(s(s(s(s(s(p(p(s(p(s(s(s(sixtimes(p(s(p(p(p(s(s(s(x0)))))))))))))))))))))))))
p(p(s(x0))) p(x0)
p(s(x0)) x0
p(0(x0)) 0(s(s(s(s(x0)))))
remain.

1.1.1 Bounds

The given TRS is match-bounded by 1. This is shown by the following automaton.