YES
by ttt2 (version ttt2 1.15)
The rewrite relation of the following TRS is considered.
thrice(0(x0)) | → | p(s(p(p(p(s(s(s(0(p(s(p(s(x0))))))))))))) |
thrice(s(x0)) | → | p(p(s(s(half(p(p(s(s(p(s(sixtimes(p(s(p(p(s(s(x0)))))))))))))))))) |
half(0(x0)) | → | p(p(s(s(p(s(0(p(s(s(s(s(x0)))))))))))) |
half(s(x0)) | → | p(s(p(p(s(s(p(p(s(s(half(p(p(s(s(p(s(x0))))))))))))))))) |
half(s(s(x0))) | → | p(s(p(s(s(p(p(s(s(half(p(p(s(s(p(s(x0)))))))))))))))) |
sixtimes(0(x0)) | → | p(s(p(s(0(s(s(s(s(s(p(s(p(s(x0)))))))))))))) |
sixtimes(s(x0)) | → | p(p(s(s(s(s(s(s(s(p(p(s(p(s(s(s(sixtimes(p(s(p(p(p(s(s(s(x0))))))))))))))))))))))))) |
p(p(s(x0))) | → | p(x0) |
p(s(x0)) | → | x0 |
p(0(x0)) | → | 0(s(s(s(s(x0))))) |
0(x0) | → | x0 |
[sixtimes(x1)] | = | 0 · x1 + -∞ |
[thrice(x1)] | = | 2 · x1 + -∞ |
[p(x1)] | = | 0 · x1 + -∞ |
[half(x1)] | = | 1 · x1 + -∞ |
[0(x1)] | = | 0 · x1 + -∞ |
[s(x1)] | = | 0 · x1 + -∞ |
half(s(x0)) | → | p(s(p(p(s(s(p(p(s(s(half(p(p(s(s(p(s(x0))))))))))))))))) |
half(s(s(x0))) | → | p(s(p(s(s(p(p(s(s(half(p(p(s(s(p(s(x0)))))))))))))))) |
sixtimes(0(x0)) | → | p(s(p(s(0(s(s(s(s(s(p(s(p(s(x0)))))))))))))) |
sixtimes(s(x0)) | → | p(p(s(s(s(s(s(s(s(p(p(s(p(s(s(s(sixtimes(p(s(p(p(p(s(s(s(x0))))))))))))))))))))))))) |
p(p(s(x0))) | → | p(x0) |
p(s(x0)) | → | x0 |
p(0(x0)) | → | 0(s(s(s(s(x0))))) |
0(x0) | → | x0 |
[sixtimes(x1)] | = | 4 · x1 + -∞ |
[p(x1)] | = | 0 · x1 + -∞ |
[half(x1)] | = | 1 · x1 + -∞ |
[0(x1)] | = | 1 · x1 + -∞ |
[s(x1)] | = | 0 · x1 + -∞ |
half(s(x0)) | → | p(s(p(p(s(s(p(p(s(s(half(p(p(s(s(p(s(x0))))))))))))))))) |
half(s(s(x0))) | → | p(s(p(s(s(p(p(s(s(half(p(p(s(s(p(s(x0)))))))))))))))) |
sixtimes(s(x0)) | → | p(p(s(s(s(s(s(s(s(p(p(s(p(s(s(s(sixtimes(p(s(p(p(p(s(s(s(x0))))))))))))))))))))))))) |
p(p(s(x0))) | → | p(x0) |
p(s(x0)) | → | x0 |
p(0(x0)) | → | 0(s(s(s(s(x0))))) |
final states:
{46, 2, 45, 21, 19, 1}
transitions:
33 | → | 54 |
33 | → | 35 |
10 | → | 64 |
10 | → | 12 |
41 | → | 49 |
3 | → | 74 |
3 | → | 25 |
3 | → | 57 |
57 | → | 25 |
9 | → | 65 |
5 | → | 62 |
5 | → | 7 |
65 | → | 13 |
55 | → | 36 |
31 | → | 33 |
49 | → | 21 |
1 | → | 71 |
1 | → | 65 |
1 | → | 9 |
71 | → | 17 |
13 | → | 1 |
13 | → | 17 |
13 | → | 71 |
26 | → | 28 |
21 | → | 29 |
22 | → | 56 |
22 | → | 24 |
75 | → | 26 |
2 | → | 4 |
2 | → | 75 |
2 | → | 45 |
4 | → | 63 |
16 | → | 19 |
14 | → | 70 |
14 | → | 16 |
63 | → | 8 |
30 | → | 36 |
30 | → | 55 |
42 | → | 48 |
42 | → | 44 |
46 | → | 45 |
17 | → | 1 |
19 | → | 71 |
half0(8) | → | 9 |
sixtimes0(28) | → | 29 |
s0(33) | → | 34 |
s0(23) | → | 47 |
s0(26) | → | 27 |
s0(42) | → | 43 |
s0(41) | → | 42 |
s0(14) | → | 15 |
s0(30) | → | 31 |
s0(37) | → | 38 |
s0(38) | → | 39 |
s0(36) | → | 37 |
s0(29) | → | 30 |
s0(3) | → | 22 |
s0(40) | → | 41 |
s0(9) | → | 10 |
s0(13) | → | 14 |
s0(31) | → | 32 |
s0(5) | → | 6 |
s0(17) | → | 18 |
s0(10) | → | 11 |
s0(2) | → | 3 |
s0(4) | → | 5 |
s0(39) | → | 40 |
s0(16) | → | 20 |
s0(22) | → | 23 |
00(47) | → | 46 |
p1(64) | → | 65 |
p1(70) | → | 71 |
p1(48) | → | 49 |
p1(54) | → | 55 |
p1(62) | → | 63 |
p1(74) | → | 75 |
p1(56) | → | 57 |
f60 | → | 2 |
p0(2) | → | 45 |
p0(18) | → | 1 |
p0(24) | → | 25 |
p0(25) | → | 26 |
p0(43) | → | 44 |
p0(3) | → | 4 |
p0(11) | → | 12 |
p0(6) | → | 7 |
p0(23) | → | 24 |
p0(32) | → | 33 |
p0(7) | → | 8 |
p0(15) | → | 16 |
p0(27) | → | 28 |
p0(35) | → | 36 |
p0(20) | → | 19 |
p0(12) | → | 13 |
p0(34) | → | 35 |
p0(44) | → | 21 |
p0(16) | → | 17 |