(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
v(s(x)) → s(p(p(s(s(s(s(s(s(s(s(w(p(p(s(s(p(s(p(s(x))))))))))))))))))))
v(0(x)) → p(p(s(s(0(p(p(s(s(s(s(s(x))))))))))))
w(s(x)) → s(s(s(s(s(s(p(p(s(s(v(p(p(s(s(s(p(p(s(s(x))))))))))))))))))))
w(0(x)) → p(s(p(p(p(p(p(p(p(p(s(s(0(s(s(s(s(s(s(x)))))))))))))))))))
p(p(s(x))) → p(x)
p(s(x)) → x
p(0(x)) → 0(s(s(s(s(s(s(s(p(s(x))))))))))
Q is empty.
(1) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Polynomial interpretation [POLO]:
POL(0(x1)) = x1
POL(p(x1)) = x1
POL(s(x1)) = x1
POL(v(x1)) = 1 + x1
POL(w(x1)) = 1 + x1
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
v(0(x)) → p(p(s(s(0(p(p(s(s(s(s(s(x))))))))))))
w(0(x)) → p(s(p(p(p(p(p(p(p(p(s(s(0(s(s(s(s(s(s(x)))))))))))))))))))
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
v(s(x)) → s(p(p(s(s(s(s(s(s(s(s(w(p(p(s(s(p(s(p(s(x))))))))))))))))))))
w(s(x)) → s(s(s(s(s(s(p(p(s(s(v(p(p(s(s(s(p(p(s(s(x))))))))))))))))))))
p(p(s(x))) → p(x)
p(s(x)) → x
p(0(x)) → 0(s(s(s(s(s(s(s(p(s(x))))))))))
Q is empty.
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
V(s(x)) → P(p(s(s(s(s(s(s(s(s(w(p(p(s(s(p(s(p(s(x)))))))))))))))))))
V(s(x)) → P(s(s(s(s(s(s(s(s(w(p(p(s(s(p(s(p(s(x))))))))))))))))))
V(s(x)) → W(p(p(s(s(p(s(p(s(x)))))))))
V(s(x)) → P(p(s(s(p(s(p(s(x))))))))
V(s(x)) → P(s(s(p(s(p(s(x)))))))
V(s(x)) → P(s(p(s(x))))
V(s(x)) → P(s(x))
W(s(x)) → P(p(s(s(v(p(p(s(s(s(p(p(s(s(x))))))))))))))
W(s(x)) → P(s(s(v(p(p(s(s(s(p(p(s(s(x)))))))))))))
W(s(x)) → V(p(p(s(s(s(p(p(s(s(x))))))))))
W(s(x)) → P(p(s(s(s(p(p(s(s(x)))))))))
W(s(x)) → P(s(s(s(p(p(s(s(x))))))))
W(s(x)) → P(p(s(s(x))))
W(s(x)) → P(s(s(x)))
P(p(s(x))) → P(x)
P(0(x)) → P(s(x))
The TRS R consists of the following rules:
v(s(x)) → s(p(p(s(s(s(s(s(s(s(s(w(p(p(s(s(p(s(p(s(x))))))))))))))))))))
w(s(x)) → s(s(s(s(s(s(p(p(s(s(v(p(p(s(s(s(p(p(s(s(x))))))))))))))))))))
p(p(s(x))) → p(x)
p(s(x)) → x
p(0(x)) → 0(s(s(s(s(s(s(s(p(s(x))))))))))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 13 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
P(p(s(x))) → P(x)
The TRS R consists of the following rules:
v(s(x)) → s(p(p(s(s(s(s(s(s(s(s(w(p(p(s(s(p(s(p(s(x))))))))))))))))))))
w(s(x)) → s(s(s(s(s(s(p(p(s(s(v(p(p(s(s(s(p(p(s(s(x))))))))))))))))))))
p(p(s(x))) → p(x)
p(s(x)) → x
p(0(x)) → 0(s(s(s(s(s(s(s(p(s(x))))))))))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(8) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
P(p(s(x))) → P(x)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(10) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- P(p(s(x))) → P(x)
The graph contains the following edges 1 > 1
(11) YES
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
V(s(x)) → W(p(p(s(s(p(s(p(s(x)))))))))
W(s(x)) → V(p(p(s(s(s(p(p(s(s(x))))))))))
The TRS R consists of the following rules:
v(s(x)) → s(p(p(s(s(s(s(s(s(s(s(w(p(p(s(s(p(s(p(s(x))))))))))))))))))))
w(s(x)) → s(s(s(s(s(s(p(p(s(s(v(p(p(s(s(s(p(p(s(s(x))))))))))))))))))))
p(p(s(x))) → p(x)
p(s(x)) → x
p(0(x)) → 0(s(s(s(s(s(s(s(p(s(x))))))))))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(13) MNOCProof (EQUIVALENT transformation)
We use the modular non-overlap check [LPAR04] to enlarge Q to all left-hand sides of R.
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
V(s(x)) → W(p(p(s(s(p(s(p(s(x)))))))))
W(s(x)) → V(p(p(s(s(s(p(p(s(s(x))))))))))
The TRS R consists of the following rules:
v(s(x)) → s(p(p(s(s(s(s(s(s(s(s(w(p(p(s(s(p(s(p(s(x))))))))))))))))))))
w(s(x)) → s(s(s(s(s(s(p(p(s(s(v(p(p(s(s(s(p(p(s(s(x))))))))))))))))))))
p(p(s(x))) → p(x)
p(s(x)) → x
p(0(x)) → 0(s(s(s(s(s(s(s(p(s(x))))))))))
The set Q consists of the following terms:
v(s(x0))
w(s(x0))
p(s(x0))
p(0(x0))
We have to consider all minimal (P,Q,R)-chains.
(15) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
V(s(x)) → W(p(p(s(s(p(s(p(s(x)))))))))
W(s(x)) → V(p(p(s(s(s(p(p(s(s(x))))))))))
The TRS R consists of the following rules:
p(s(x)) → x
p(0(x)) → 0(s(s(s(s(s(s(s(p(s(x))))))))))
The set Q consists of the following terms:
v(s(x0))
w(s(x0))
p(s(x0))
p(0(x0))
We have to consider all minimal (P,Q,R)-chains.
(17) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
v(s(x0))
w(s(x0))
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
V(s(x)) → W(p(p(s(s(p(s(p(s(x)))))))))
W(s(x)) → V(p(p(s(s(s(p(p(s(s(x))))))))))
The TRS R consists of the following rules:
p(s(x)) → x
p(0(x)) → 0(s(s(s(s(s(s(s(p(s(x))))))))))
The set Q consists of the following terms:
p(s(x0))
p(0(x0))
We have to consider all minimal (P,Q,R)-chains.
(19) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
W(s(x)) → V(p(p(s(s(s(p(p(s(s(x))))))))))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( V(x1) ) = max{0, x1 - 2} |
POL( p(x1) ) = max{0, x1 - 2} |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
p(s(x)) → x
p(0(x)) → 0(s(s(s(s(s(s(s(p(s(x))))))))))
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
V(s(x)) → W(p(p(s(s(p(s(p(s(x)))))))))
The TRS R consists of the following rules:
p(s(x)) → x
p(0(x)) → 0(s(s(s(s(s(s(s(p(s(x))))))))))
The set Q consists of the following terms:
p(s(x0))
p(0(x0))
We have to consider all minimal (P,Q,R)-chains.
(21) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(22) TRUE