YES
0 QTRS
↳1 QTRS Reverse (⇔, 0 ms)
↳2 QTRS
↳3 FlatCCProof (⇔, 0 ms)
↳4 QTRS
↳5 RootLabelingProof (⇔, 0 ms)
↳6 QTRS
↳7 QTRSRRRProof (⇔, 8 ms)
↳8 QTRS
↳9 DependencyPairsProof (⇔, 0 ms)
↳10 QDP
↳11 DependencyGraphProof (⇔, 0 ms)
↳12 QDP
↳13 QDPOrderProof (⇔, 45 ms)
↳14 QDP
↳15 DependencyGraphProof (⇔, 0 ms)
↳16 QDP
↳17 UsableRulesProof (⇔, 0 ms)
↳18 QDP
↳19 QDPOrderProof (⇔, 0 ms)
↳20 QDP
↳21 PisEmptyProof (⇔, 0 ms)
↳22 YES
a(b(c(x))) → a(a(b(x)))
a(b(c(x))) → b(c(b(c(x))))
a(b(c(x))) → c(b(c(a(x))))
c(b(a(x))) → b(a(a(x)))
c(b(a(x))) → c(b(c(b(x))))
c(b(a(x))) → a(c(b(c(x))))
c(b(a(x))) → c(b(c(b(x))))
c(c(b(a(x)))) → c(b(a(a(x))))
b(c(b(a(x)))) → b(b(a(a(x))))
a(c(b(a(x)))) → a(b(a(a(x))))
c(c(b(a(x)))) → c(a(c(b(c(x)))))
b(c(b(a(x)))) → b(a(c(b(c(x)))))
a(c(b(a(x)))) → a(a(c(b(c(x)))))
c_{b_1}(b_{a_1}(a_{c_1}(x))) → c_{b_1}(b_{c_1}(c_{b_1}(b_{c_1}(x))))
c_{b_1}(b_{a_1}(a_{b_1}(x))) → c_{b_1}(b_{c_1}(c_{b_1}(b_{b_1}(x))))
c_{b_1}(b_{a_1}(a_{a_1}(x))) → c_{b_1}(b_{c_1}(c_{b_1}(b_{a_1}(x))))
c_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(x)))) → c_{b_1}(b_{a_1}(a_{a_1}(a_{c_1}(x))))
c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → c_{b_1}(b_{a_1}(a_{a_1}(a_{b_1}(x))))
c_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → c_{b_1}(b_{a_1}(a_{a_1}(a_{a_1}(x))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(x)))) → b_{b_1}(b_{a_1}(a_{a_1}(a_{c_1}(x))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → b_{b_1}(b_{a_1}(a_{a_1}(a_{b_1}(x))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → b_{b_1}(b_{a_1}(a_{a_1}(a_{a_1}(x))))
a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(x)))) → a_{b_1}(b_{a_1}(a_{a_1}(a_{c_1}(x))))
a_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → a_{b_1}(b_{a_1}(a_{a_1}(a_{b_1}(x))))
a_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → a_{b_1}(b_{a_1}(a_{a_1}(a_{a_1}(x))))
c_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(x)))) → c_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(c_{c_1}(x)))))
c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → c_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(c_{b_1}(x)))))
c_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → c_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x)))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(x)))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(c_{c_1}(x)))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(c_{b_1}(x)))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x)))))
a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(x)))) → a_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(c_{c_1}(x)))))
a_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → a_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(c_{b_1}(x)))))
a_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → a_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x)))))
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(a_{a_1}(x1)) = x1
POL(a_{b_1}(x1)) = x1
POL(a_{c_1}(x1)) = x1
POL(b_{a_1}(x1)) = 1 + x1
POL(b_{b_1}(x1)) = x1
POL(b_{c_1}(x1)) = x1
POL(c_{a_1}(x1)) = x1
POL(c_{b_1}(x1)) = x1
POL(c_{c_1}(x1)) = x1
c_{b_1}(b_{a_1}(a_{c_1}(x))) → c_{b_1}(b_{c_1}(c_{b_1}(b_{c_1}(x))))
c_{b_1}(b_{a_1}(a_{b_1}(x))) → c_{b_1}(b_{c_1}(c_{b_1}(b_{b_1}(x))))
c_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(x)))) → c_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(c_{c_1}(x)))))
c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → c_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(c_{b_1}(x)))))
c_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → c_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x)))))
a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(x)))) → a_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(c_{c_1}(x)))))
a_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → a_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(c_{b_1}(x)))))
a_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → a_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x)))))
c_{b_1}(b_{a_1}(a_{a_1}(x))) → c_{b_1}(b_{c_1}(c_{b_1}(b_{a_1}(x))))
c_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(x)))) → c_{b_1}(b_{a_1}(a_{a_1}(a_{c_1}(x))))
c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → c_{b_1}(b_{a_1}(a_{a_1}(a_{b_1}(x))))
c_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → c_{b_1}(b_{a_1}(a_{a_1}(a_{a_1}(x))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(x)))) → b_{b_1}(b_{a_1}(a_{a_1}(a_{c_1}(x))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → b_{b_1}(b_{a_1}(a_{a_1}(a_{b_1}(x))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → b_{b_1}(b_{a_1}(a_{a_1}(a_{a_1}(x))))
a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(x)))) → a_{b_1}(b_{a_1}(a_{a_1}(a_{c_1}(x))))
a_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → a_{b_1}(b_{a_1}(a_{a_1}(a_{b_1}(x))))
a_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → a_{b_1}(b_{a_1}(a_{a_1}(a_{a_1}(x))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(x)))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(c_{c_1}(x)))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(c_{b_1}(x)))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x)))))
C_{B_1}(b_{a_1}(a_{a_1}(x))) → C_{B_1}(b_{c_1}(c_{b_1}(b_{a_1}(x))))
C_{B_1}(b_{a_1}(a_{a_1}(x))) → B_{C_1}(c_{b_1}(b_{a_1}(x)))
C_{B_1}(b_{a_1}(a_{a_1}(x))) → C_{B_1}(b_{a_1}(x))
C_{C_1}(c_{b_1}(b_{a_1}(a_{c_1}(x)))) → C_{B_1}(b_{a_1}(a_{a_1}(a_{c_1}(x))))
C_{C_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → C_{B_1}(b_{a_1}(a_{a_1}(a_{b_1}(x))))
C_{C_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → C_{B_1}(b_{a_1}(a_{a_1}(a_{a_1}(x))))
B_{C_1}(c_{b_1}(b_{a_1}(a_{c_1}(x)))) → A_{C_1}(c_{b_1}(b_{c_1}(c_{c_1}(x))))
B_{C_1}(c_{b_1}(b_{a_1}(a_{c_1}(x)))) → C_{B_1}(b_{c_1}(c_{c_1}(x)))
B_{C_1}(c_{b_1}(b_{a_1}(a_{c_1}(x)))) → B_{C_1}(c_{c_1}(x))
B_{C_1}(c_{b_1}(b_{a_1}(a_{c_1}(x)))) → C_{C_1}(x)
B_{C_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → A_{C_1}(c_{b_1}(b_{c_1}(c_{b_1}(x))))
B_{C_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → C_{B_1}(b_{c_1}(c_{b_1}(x)))
B_{C_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → B_{C_1}(c_{b_1}(x))
B_{C_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → C_{B_1}(x)
B_{C_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → A_{C_1}(c_{b_1}(b_{c_1}(c_{a_1}(x))))
B_{C_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → C_{B_1}(b_{c_1}(c_{a_1}(x)))
B_{C_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → B_{C_1}(c_{a_1}(x))
c_{b_1}(b_{a_1}(a_{a_1}(x))) → c_{b_1}(b_{c_1}(c_{b_1}(b_{a_1}(x))))
c_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(x)))) → c_{b_1}(b_{a_1}(a_{a_1}(a_{c_1}(x))))
c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → c_{b_1}(b_{a_1}(a_{a_1}(a_{b_1}(x))))
c_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → c_{b_1}(b_{a_1}(a_{a_1}(a_{a_1}(x))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(x)))) → b_{b_1}(b_{a_1}(a_{a_1}(a_{c_1}(x))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → b_{b_1}(b_{a_1}(a_{a_1}(a_{b_1}(x))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → b_{b_1}(b_{a_1}(a_{a_1}(a_{a_1}(x))))
a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(x)))) → a_{b_1}(b_{a_1}(a_{a_1}(a_{c_1}(x))))
a_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → a_{b_1}(b_{a_1}(a_{a_1}(a_{b_1}(x))))
a_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → a_{b_1}(b_{a_1}(a_{a_1}(a_{a_1}(x))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(x)))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(c_{c_1}(x)))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(c_{b_1}(x)))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x)))))
C_{B_1}(b_{a_1}(a_{a_1}(x))) → B_{C_1}(c_{b_1}(b_{a_1}(x)))
B_{C_1}(c_{b_1}(b_{a_1}(a_{c_1}(x)))) → B_{C_1}(c_{c_1}(x))
B_{C_1}(c_{b_1}(b_{a_1}(a_{c_1}(x)))) → C_{C_1}(x)
C_{C_1}(c_{b_1}(b_{a_1}(a_{c_1}(x)))) → C_{B_1}(b_{a_1}(a_{a_1}(a_{c_1}(x))))
C_{B_1}(b_{a_1}(a_{a_1}(x))) → C_{B_1}(b_{a_1}(x))
C_{C_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → C_{B_1}(b_{a_1}(a_{a_1}(a_{b_1}(x))))
C_{C_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → C_{B_1}(b_{a_1}(a_{a_1}(a_{a_1}(x))))
B_{C_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → B_{C_1}(c_{b_1}(x))
B_{C_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → C_{B_1}(x)
c_{b_1}(b_{a_1}(a_{a_1}(x))) → c_{b_1}(b_{c_1}(c_{b_1}(b_{a_1}(x))))
c_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(x)))) → c_{b_1}(b_{a_1}(a_{a_1}(a_{c_1}(x))))
c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → c_{b_1}(b_{a_1}(a_{a_1}(a_{b_1}(x))))
c_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → c_{b_1}(b_{a_1}(a_{a_1}(a_{a_1}(x))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(x)))) → b_{b_1}(b_{a_1}(a_{a_1}(a_{c_1}(x))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → b_{b_1}(b_{a_1}(a_{a_1}(a_{b_1}(x))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → b_{b_1}(b_{a_1}(a_{a_1}(a_{a_1}(x))))
a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(x)))) → a_{b_1}(b_{a_1}(a_{a_1}(a_{c_1}(x))))
a_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → a_{b_1}(b_{a_1}(a_{a_1}(a_{b_1}(x))))
a_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → a_{b_1}(b_{a_1}(a_{a_1}(a_{a_1}(x))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(x)))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(c_{c_1}(x)))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(c_{b_1}(x)))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x)))))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
B_{C_1}(c_{b_1}(b_{a_1}(a_{c_1}(x)))) → B_{C_1}(c_{c_1}(x))
C_{C_1}(c_{b_1}(b_{a_1}(a_{c_1}(x)))) → C_{B_1}(b_{a_1}(a_{a_1}(a_{c_1}(x))))
C_{C_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → C_{B_1}(b_{a_1}(a_{a_1}(a_{b_1}(x))))
C_{C_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → C_{B_1}(b_{a_1}(a_{a_1}(a_{a_1}(x))))
B_{C_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → B_{C_1}(c_{b_1}(x))
B_{C_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → C_{B_1}(x)
POL(B_{C_1}(x1)) = x1
POL(C_{B_1}(x1)) = x1
POL(C_{C_1}(x1)) = 1 + x1
POL(a_{a_1}(x1)) = x1
POL(a_{b_1}(x1)) = x1
POL(a_{c_1}(x1)) = x1
POL(b_{a_1}(x1)) = 1 + x1
POL(b_{b_1}(x1)) = 0
POL(b_{c_1}(x1)) = x1
POL(c_{a_1}(x1)) = 0
POL(c_{b_1}(x1)) = x1
POL(c_{c_1}(x1)) = x1
c_{b_1}(b_{a_1}(a_{a_1}(x))) → c_{b_1}(b_{c_1}(c_{b_1}(b_{a_1}(x))))
c_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(x)))) → c_{b_1}(b_{a_1}(a_{a_1}(a_{c_1}(x))))
c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → c_{b_1}(b_{a_1}(a_{a_1}(a_{b_1}(x))))
c_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → c_{b_1}(b_{a_1}(a_{a_1}(a_{a_1}(x))))
a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(x)))) → a_{b_1}(b_{a_1}(a_{a_1}(a_{c_1}(x))))
a_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → a_{b_1}(b_{a_1}(a_{a_1}(a_{b_1}(x))))
a_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → a_{b_1}(b_{a_1}(a_{a_1}(a_{a_1}(x))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(x)))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(c_{c_1}(x)))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(c_{b_1}(x)))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(x)))) → b_{b_1}(b_{a_1}(a_{a_1}(a_{c_1}(x))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → b_{b_1}(b_{a_1}(a_{a_1}(a_{b_1}(x))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → b_{b_1}(b_{a_1}(a_{a_1}(a_{a_1}(x))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x)))))
C_{B_1}(b_{a_1}(a_{a_1}(x))) → B_{C_1}(c_{b_1}(b_{a_1}(x)))
B_{C_1}(c_{b_1}(b_{a_1}(a_{c_1}(x)))) → C_{C_1}(x)
C_{B_1}(b_{a_1}(a_{a_1}(x))) → C_{B_1}(b_{a_1}(x))
c_{b_1}(b_{a_1}(a_{a_1}(x))) → c_{b_1}(b_{c_1}(c_{b_1}(b_{a_1}(x))))
c_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(x)))) → c_{b_1}(b_{a_1}(a_{a_1}(a_{c_1}(x))))
c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → c_{b_1}(b_{a_1}(a_{a_1}(a_{b_1}(x))))
c_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → c_{b_1}(b_{a_1}(a_{a_1}(a_{a_1}(x))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(x)))) → b_{b_1}(b_{a_1}(a_{a_1}(a_{c_1}(x))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → b_{b_1}(b_{a_1}(a_{a_1}(a_{b_1}(x))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → b_{b_1}(b_{a_1}(a_{a_1}(a_{a_1}(x))))
a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(x)))) → a_{b_1}(b_{a_1}(a_{a_1}(a_{c_1}(x))))
a_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → a_{b_1}(b_{a_1}(a_{a_1}(a_{b_1}(x))))
a_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → a_{b_1}(b_{a_1}(a_{a_1}(a_{a_1}(x))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(x)))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(c_{c_1}(x)))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(c_{b_1}(x)))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x)))))
C_{B_1}(b_{a_1}(a_{a_1}(x))) → C_{B_1}(b_{a_1}(x))
c_{b_1}(b_{a_1}(a_{a_1}(x))) → c_{b_1}(b_{c_1}(c_{b_1}(b_{a_1}(x))))
c_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(x)))) → c_{b_1}(b_{a_1}(a_{a_1}(a_{c_1}(x))))
c_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → c_{b_1}(b_{a_1}(a_{a_1}(a_{b_1}(x))))
c_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → c_{b_1}(b_{a_1}(a_{a_1}(a_{a_1}(x))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(x)))) → b_{b_1}(b_{a_1}(a_{a_1}(a_{c_1}(x))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → b_{b_1}(b_{a_1}(a_{a_1}(a_{b_1}(x))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → b_{b_1}(b_{a_1}(a_{a_1}(a_{a_1}(x))))
a_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(x)))) → a_{b_1}(b_{a_1}(a_{a_1}(a_{c_1}(x))))
a_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → a_{b_1}(b_{a_1}(a_{a_1}(a_{b_1}(x))))
a_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → a_{b_1}(b_{a_1}(a_{a_1}(a_{a_1}(x))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{c_1}(x)))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(c_{c_1}(x)))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{b_1}(x)))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(c_{b_1}(x)))))
b_{c_1}(c_{b_1}(b_{a_1}(a_{a_1}(x)))) → b_{a_1}(a_{c_1}(c_{b_1}(b_{c_1}(c_{a_1}(x)))))
C_{B_1}(b_{a_1}(a_{a_1}(x))) → C_{B_1}(b_{a_1}(x))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
C_{B_1}(b_{a_1}(a_{a_1}(x))) → C_{B_1}(b_{a_1}(x))
POL(C_{B_1}(x1)) = x1
POL(a_{a_1}(x1)) = 1 + x1
POL(b_{a_1}(x1)) = x1