YES
Termination Proof
Termination Proof
by ttt2 (version ttt2 1.15)
Input
The rewrite relation of the following TRS is considered.
| 
a(b(c(a(x0)))) | 
→ | 
b(a(c(b(a(b(x0)))))) | 
| 
a(d(x0)) | 
→ | 
c(x0) | 
| 
a(f(f(x0))) | 
→ | 
g(x0) | 
| 
b(g(x0)) | 
→ | 
g(b(x0)) | 
| 
c(x0) | 
→ | 
f(f(x0)) | 
| 
c(a(c(x0))) | 
→ | 
b(c(a(b(c(x0))))) | 
| 
c(d(x0)) | 
→ | 
a(a(x0)) | 
| 
g(x0) | 
→ | 
c(a(x0)) | 
| 
g(x0) | 
→ | 
d(d(d(d(x0)))) | 
Proof
1 Rule Removal
      Using the
      linear polynomial interpretation over the arctic semiring over the integers
| [f(x1)] | 
 =  | 
3 · 
                    x1 + 
                -∞
             | 
| [c(x1)] | 
 =  | 
6 · 
                    x1 + 
                -∞
             | 
| [d(x1)] | 
 =  | 
2 · 
                    x1 + 
                -∞
             | 
| [g(x1)] | 
 =  | 
10 · 
                    x1 + 
                -∞
             | 
| [a(x1)] | 
 =  | 
4 · 
                    x1 + 
                -∞
             | 
| [b(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
          the
          rules
| 
a(b(c(a(x0)))) | 
→ | 
b(a(c(b(a(b(x0)))))) | 
| 
a(d(x0)) | 
→ | 
c(x0) | 
| 
a(f(f(x0))) | 
→ | 
g(x0) | 
| 
b(g(x0)) | 
→ | 
g(b(x0)) | 
| 
c(x0) | 
→ | 
f(f(x0)) | 
| 
c(a(c(x0))) | 
→ | 
b(c(a(b(c(x0))))) | 
| 
c(d(x0)) | 
→ | 
a(a(x0)) | 
| 
g(x0) | 
→ | 
c(a(x0)) | 
          remain.
        1.1 Rule Removal
      Using the
      linear polynomial interpretation over the arctic semiring over the integers
| [f(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [c(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [d(x1)] | 
 =  | 
11 · 
                    x1 + 
                -∞
             | 
| [g(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [a(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [b(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
          the
          rules
| 
a(b(c(a(x0)))) | 
→ | 
b(a(c(b(a(b(x0)))))) | 
| 
a(f(f(x0))) | 
→ | 
g(x0) | 
| 
b(g(x0)) | 
→ | 
g(b(x0)) | 
| 
c(x0) | 
→ | 
f(f(x0)) | 
| 
c(a(c(x0))) | 
→ | 
b(c(a(b(c(x0))))) | 
| 
g(x0) | 
→ | 
c(a(x0)) | 
          remain.
        1.1.1 String Reversal
        Since only unary symbols occur, one can reverse all terms and obtains the TRS        
        
| 
a(c(b(a(x0)))) | 
→ | 
b(a(b(c(a(b(x0)))))) | 
| 
f(f(a(x0))) | 
→ | 
g(x0) | 
| 
g(b(x0)) | 
→ | 
b(g(x0)) | 
| 
c(x0) | 
→ | 
f(f(x0)) | 
| 
c(a(c(x0))) | 
→ | 
c(b(a(c(b(x0))))) | 
| 
g(x0) | 
→ | 
a(c(x0)) | 
1.1.1.1 Bounds
        The given TRS is 
        match-bounded by 4.
        This is shown by the following automaton.
        
- 
final states:
{16, 12, 10, 9, 8, 1}
 
- 
transitions:
| 78 | 
 →  | 
62 | 
| 23 | 
 →  | 
5 | 
| 111 | 
 →  | 
91 | 
| 111 | 
 →  | 
104 | 
| 61 | 
 →  | 
76 | 
| 89 | 
 →  | 
110 | 
| 87 | 
 →  | 
77 | 
| 15 | 
 →  | 
33 | 
| 129 | 
 →  | 
122 | 
| 3 | 
 →  | 
24 | 
| 3 | 
 →  | 
48 | 
| 9 | 
 →  | 
8 | 
| 9 | 
 →  | 
62 | 
| 110 | 
 →  | 
121 | 
| 130 | 
 →  | 
139 | 
| 90 | 
 →  | 
102 | 
| 49 | 
 →  | 
5 | 
| 49 | 
 →  | 
23 | 
| 1 | 
 →  | 
5 | 
| 1 | 
 →  | 
23 | 
| 1 | 
 →  | 
14 | 
| 1 | 
 →  | 
49 | 
| 1 | 
 →  | 
69 | 
| 1 | 
 →  | 
62 | 
| 1 | 
 →  | 
8 | 
| 1 | 
 →  | 
16 | 
| 1 | 
 →  | 
47 | 
| 1 | 
 →  | 
78 | 
| 123 | 
 →  | 
104 | 
| 123 | 
 →  | 
111 | 
| 8 | 
 →  | 
77 | 
| 8 | 
 →  | 
46 | 
| 8 | 
 →  | 
17 | 
| 8 | 
 →  | 
10 | 
| 8 | 
 →  | 
38 | 
| 8 | 
 →  | 
54 | 
| 8 | 
 →  | 
87 | 
| 8 | 
 →  | 
53 | 
| 8 | 
 →  | 
11 | 
| 8 | 
 →  | 
37 | 
| 8 | 
 →  | 
86 | 
| 13 | 
 →  | 
88 | 
| 26 | 
 →  | 
13 | 
| 76 | 
 →  | 
85 | 
| 38 | 
 →  | 
17 | 
| 141 | 
 →  | 
131 | 
| 121 | 
 →  | 
127 | 
| 88 | 
 →  | 
115 | 
| 54 | 
 →  | 
46 | 
| 75 | 
 →  | 
68 | 
| 67 | 
 →  | 
73 | 
| 117 | 
 →  | 
104 | 
| 117 | 
 →  | 
111 | 
| 2 | 
 →  | 
36 | 
| 2 | 
 →  | 
45 | 
| 2 | 
 →  | 
61 | 
| 4 | 
 →  | 
21 | 
| 45 | 
 →  | 
52 | 
| 63 | 
 →  | 
23 | 
| 63 | 
 →  | 
49 | 
| 12 | 
 →  | 
46 | 
| 12 | 
 →  | 
17 | 
| 12 | 
 →  | 
77 | 
| 104 | 
 →  | 
91 | 
| 69 | 
 →  | 
23 | 
| 69 | 
 →  | 
49 | 
| 35 | 
 →  | 
12 | 
| 115 | 
 →  | 
130 | 
| 48 | 
 →  | 
67 | 
| 47 | 
 →  | 
8 | 
| 132 | 
 →  | 
116 | 
| 94 | 
 →  | 
86 | 
| 94 | 
 →  | 
11 | 
| 94 | 
 →  | 
87 | 
| 94 | 
 →  | 
38 | 
| 94 | 
 →  | 
8 | 
| 94 | 
 →  | 
47 | 
| 94 | 
 →  | 
16 | 
| 94 | 
 →  | 
62 | 
| 94 | 
 →  | 
78 | 
| 
f60
 | 
 →  | 
2 | 
| 
a3(131) | 
 →  | 
132 | 
| 
a3(122) | 
 →  | 
123 | 
| 
g2(110) | 
 →  | 
111 | 
| 
g2(115) | 
 →  | 
116 | 
| 
a1(92) | 
 →  | 
93 | 
| 
a1(46) | 
 →  | 
47 | 
| 
a1(89) | 
 →  | 
90 | 
| 
g1(48) | 
 →  | 
49 | 
| 
g1(61) | 
 →  | 
62 | 
| 
c2(67) | 
 →  | 
68 | 
| 
c2(76) | 
 →  | 
77 | 
| 
a0(6) | 
 →  | 
7 | 
| 
a0(3) | 
 →  | 
4 | 
| 
a0(13) | 
 →  | 
14 | 
| 
a0(17) | 
 →  | 
16 | 
| 
a2(77) | 
 →  | 
78 | 
| 
a2(68) | 
 →  | 
69 | 
| 
b2(116) | 
 →  | 
117 | 
| 
c0(3) | 
 →  | 
13 | 
| 
c0(15) | 
 →  | 
12 | 
| 
c0(4) | 
 →  | 
5 | 
| 
c0(2) | 
 →  | 
17 | 
| 
c1(45) | 
 →  | 
46 | 
| 
c1(90) | 
 →  | 
91 | 
| 
g0(2) | 
 →  | 
8 | 
| 
b0(2) | 
 →  | 
3 | 
| 
b0(8) | 
 →  | 
9 | 
| 
b0(14) | 
 →  | 
15 | 
| 
b0(7) | 
 →  | 
1 | 
| 
b0(5) | 
 →  | 
6 | 
| 
f1(36) | 
 →  | 
37 | 
| 
f1(22) | 
 →  | 
23 | 
| 
f1(34) | 
 →  | 
35 | 
| 
f1(25) | 
 →  | 
26 | 
| 
f1(24) | 
 →  | 
25 | 
| 
f1(37) | 
 →  | 
38 | 
| 
f1(33) | 
 →  | 
34 | 
| 
f1(21) | 
 →  | 
22 | 
| 
f2(52) | 
 →  | 
53 | 
| 
f2(102) | 
 →  | 
103 | 
| 
f2(103) | 
 →  | 
104 | 
| 
f2(53) | 
 →  | 
54 | 
| 
c3(130) | 
 →  | 
131 | 
| 
c3(121) | 
 →  | 
122 | 
| 
f3(86) | 
 →  | 
87 | 
| 
f3(85) | 
 →  | 
86 | 
| 
f3(74) | 
 →  | 
75 | 
| 
f3(73) | 
 →  | 
74 | 
| 
f0(11) | 
 →  | 
10 | 
| 
f0(2) | 
 →  | 
11 | 
| 
b1(91) | 
 →  | 
92 | 
| 
b1(93) | 
 →  | 
94 | 
| 
b1(62) | 
 →  | 
63 | 
| 
b1(88) | 
 →  | 
89 | 
| 
f4(140) | 
 →  | 
141 | 
| 
f4(127) | 
 →  | 
128 | 
| 
f4(139) | 
 →  | 
140 | 
| 
f4(128) | 
 →  | 
129 |