YES
Termination Proof
Termination Proof
by ttt2 (version ttt2 1.15)
Input
The rewrite relation of the following TRS is considered.
a(b(c(a(x0)))) |
→ |
b(a(c(b(a(b(x0)))))) |
a(d(x0)) |
→ |
c(x0) |
a(f(f(x0))) |
→ |
g(x0) |
b(g(x0)) |
→ |
g(b(x0)) |
c(x0) |
→ |
f(f(x0)) |
c(a(c(x0))) |
→ |
b(c(a(b(c(x0))))) |
c(d(x0)) |
→ |
a(a(x0)) |
g(x0) |
→ |
c(a(x0)) |
g(x0) |
→ |
d(d(d(d(x0)))) |
Proof
1 Rule Removal
Using the
linear polynomial interpretation over the arctic semiring over the integers
[f(x1)] |
= |
3 ·
x1 +
-∞
|
[c(x1)] |
= |
6 ·
x1 +
-∞
|
[d(x1)] |
= |
2 ·
x1 +
-∞
|
[g(x1)] |
= |
10 ·
x1 +
-∞
|
[a(x1)] |
= |
4 ·
x1 +
-∞
|
[b(x1)] |
= |
0 ·
x1 +
-∞
|
the
rules
a(b(c(a(x0)))) |
→ |
b(a(c(b(a(b(x0)))))) |
a(d(x0)) |
→ |
c(x0) |
a(f(f(x0))) |
→ |
g(x0) |
b(g(x0)) |
→ |
g(b(x0)) |
c(x0) |
→ |
f(f(x0)) |
c(a(c(x0))) |
→ |
b(c(a(b(c(x0))))) |
c(d(x0)) |
→ |
a(a(x0)) |
g(x0) |
→ |
c(a(x0)) |
remain.
1.1 Rule Removal
Using the
linear polynomial interpretation over the arctic semiring over the integers
[f(x1)] |
= |
0 ·
x1 +
-∞
|
[c(x1)] |
= |
0 ·
x1 +
-∞
|
[d(x1)] |
= |
11 ·
x1 +
-∞
|
[g(x1)] |
= |
0 ·
x1 +
-∞
|
[a(x1)] |
= |
0 ·
x1 +
-∞
|
[b(x1)] |
= |
0 ·
x1 +
-∞
|
the
rules
a(b(c(a(x0)))) |
→ |
b(a(c(b(a(b(x0)))))) |
a(f(f(x0))) |
→ |
g(x0) |
b(g(x0)) |
→ |
g(b(x0)) |
c(x0) |
→ |
f(f(x0)) |
c(a(c(x0))) |
→ |
b(c(a(b(c(x0))))) |
g(x0) |
→ |
c(a(x0)) |
remain.
1.1.1 String Reversal
Since only unary symbols occur, one can reverse all terms and obtains the TRS
a(c(b(a(x0)))) |
→ |
b(a(b(c(a(b(x0)))))) |
f(f(a(x0))) |
→ |
g(x0) |
g(b(x0)) |
→ |
b(g(x0)) |
c(x0) |
→ |
f(f(x0)) |
c(a(c(x0))) |
→ |
c(b(a(c(b(x0))))) |
g(x0) |
→ |
a(c(x0)) |
1.1.1.1 Bounds
The given TRS is
match-bounded by 4.
This is shown by the following automaton.
-
final states:
{16, 12, 10, 9, 8, 1}
-
transitions:
78 |
→ |
62 |
23 |
→ |
5 |
111 |
→ |
91 |
111 |
→ |
104 |
61 |
→ |
76 |
89 |
→ |
110 |
87 |
→ |
77 |
15 |
→ |
33 |
129 |
→ |
122 |
3 |
→ |
24 |
3 |
→ |
48 |
9 |
→ |
8 |
9 |
→ |
62 |
110 |
→ |
121 |
130 |
→ |
139 |
90 |
→ |
102 |
49 |
→ |
5 |
49 |
→ |
23 |
1 |
→ |
5 |
1 |
→ |
23 |
1 |
→ |
14 |
1 |
→ |
49 |
1 |
→ |
69 |
1 |
→ |
62 |
1 |
→ |
8 |
1 |
→ |
16 |
1 |
→ |
47 |
1 |
→ |
78 |
123 |
→ |
104 |
123 |
→ |
111 |
8 |
→ |
77 |
8 |
→ |
46 |
8 |
→ |
17 |
8 |
→ |
10 |
8 |
→ |
38 |
8 |
→ |
54 |
8 |
→ |
87 |
8 |
→ |
53 |
8 |
→ |
11 |
8 |
→ |
37 |
8 |
→ |
86 |
13 |
→ |
88 |
26 |
→ |
13 |
76 |
→ |
85 |
38 |
→ |
17 |
141 |
→ |
131 |
121 |
→ |
127 |
88 |
→ |
115 |
54 |
→ |
46 |
75 |
→ |
68 |
67 |
→ |
73 |
117 |
→ |
104 |
117 |
→ |
111 |
2 |
→ |
36 |
2 |
→ |
45 |
2 |
→ |
61 |
4 |
→ |
21 |
45 |
→ |
52 |
63 |
→ |
23 |
63 |
→ |
49 |
12 |
→ |
46 |
12 |
→ |
17 |
12 |
→ |
77 |
104 |
→ |
91 |
69 |
→ |
23 |
69 |
→ |
49 |
35 |
→ |
12 |
115 |
→ |
130 |
48 |
→ |
67 |
47 |
→ |
8 |
132 |
→ |
116 |
94 |
→ |
86 |
94 |
→ |
11 |
94 |
→ |
87 |
94 |
→ |
38 |
94 |
→ |
8 |
94 |
→ |
47 |
94 |
→ |
16 |
94 |
→ |
62 |
94 |
→ |
78 |
f60
|
→ |
2 |
a3(131) |
→ |
132 |
a3(122) |
→ |
123 |
g2(110) |
→ |
111 |
g2(115) |
→ |
116 |
a1(92) |
→ |
93 |
a1(46) |
→ |
47 |
a1(89) |
→ |
90 |
g1(48) |
→ |
49 |
g1(61) |
→ |
62 |
c2(67) |
→ |
68 |
c2(76) |
→ |
77 |
a0(6) |
→ |
7 |
a0(3) |
→ |
4 |
a0(13) |
→ |
14 |
a0(17) |
→ |
16 |
a2(77) |
→ |
78 |
a2(68) |
→ |
69 |
b2(116) |
→ |
117 |
c0(3) |
→ |
13 |
c0(15) |
→ |
12 |
c0(4) |
→ |
5 |
c0(2) |
→ |
17 |
c1(45) |
→ |
46 |
c1(90) |
→ |
91 |
g0(2) |
→ |
8 |
b0(2) |
→ |
3 |
b0(8) |
→ |
9 |
b0(14) |
→ |
15 |
b0(7) |
→ |
1 |
b0(5) |
→ |
6 |
f1(36) |
→ |
37 |
f1(22) |
→ |
23 |
f1(34) |
→ |
35 |
f1(25) |
→ |
26 |
f1(24) |
→ |
25 |
f1(37) |
→ |
38 |
f1(33) |
→ |
34 |
f1(21) |
→ |
22 |
f2(52) |
→ |
53 |
f2(102) |
→ |
103 |
f2(103) |
→ |
104 |
f2(53) |
→ |
54 |
c3(130) |
→ |
131 |
c3(121) |
→ |
122 |
f3(86) |
→ |
87 |
f3(85) |
→ |
86 |
f3(74) |
→ |
75 |
f3(73) |
→ |
74 |
f0(11) |
→ |
10 |
f0(2) |
→ |
11 |
b1(91) |
→ |
92 |
b1(93) |
→ |
94 |
b1(62) |
→ |
63 |
b1(88) |
→ |
89 |
f4(140) |
→ |
141 |
f4(127) |
→ |
128 |
f4(139) |
→ |
140 |
f4(128) |
→ |
129 |