YES
0 QTRS
↳1 QTRS Reverse (⇔, 0 ms)
↳2 QTRS
↳3 QTRSRRRProof (⇔, 41 ms)
↳4 QTRS
↳5 DependencyPairsProof (⇔, 30 ms)
↳6 QDP
↳7 DependencyGraphProof (⇔, 0 ms)
↳8 QDP
↳9 QDPOrderProof (⇔, 35 ms)
↳10 QDP
↳11 DependencyGraphProof (⇔, 0 ms)
↳12 QDP
↳13 UsableRulesProof (⇔, 0 ms)
↳14 QDP
↳15 QDPSizeChangeProof (⇔, 0 ms)
↳16 YES
a(b(c(a(x)))) → b(a(c(b(a(b(x))))))
a(d(x)) → c(x)
a(f(f(x))) → g(x)
b(g(x)) → g(b(x))
c(x) → f(f(x))
c(a(c(x))) → b(c(a(b(c(x)))))
c(d(x)) → a(a(x))
g(x) → c(a(x))
g(x) → d(d(d(d(x))))
a(c(b(a(x)))) → b(a(b(c(a(b(x))))))
d(a(x)) → c(x)
f(f(a(x))) → g(x)
g(b(x)) → b(g(x))
c(x) → f(f(x))
c(a(c(x))) → c(b(a(c(b(x)))))
d(c(x)) → a(a(x))
g(x) → a(c(x))
g(x) → d(d(d(d(x))))
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(a(x1)) = 12 + x1
POL(b(x1)) = x1
POL(c(x1)) = 18 + x1
POL(d(x1)) = 7 + x1
POL(f(x1)) = 9 + x1
POL(g(x1)) = 30 + x1
d(a(x)) → c(x)
d(c(x)) → a(a(x))
g(x) → d(d(d(d(x))))
a(c(b(a(x)))) → b(a(b(c(a(b(x))))))
f(f(a(x))) → g(x)
g(b(x)) → b(g(x))
c(x) → f(f(x))
c(a(c(x))) → c(b(a(c(b(x)))))
g(x) → a(c(x))
A(c(b(a(x)))) → A(b(c(a(b(x)))))
A(c(b(a(x)))) → C(a(b(x)))
A(c(b(a(x)))) → A(b(x))
F(f(a(x))) → G(x)
G(b(x)) → G(x)
C(x) → F(f(x))
C(x) → F(x)
C(a(c(x))) → C(b(a(c(b(x)))))
C(a(c(x))) → A(c(b(x)))
C(a(c(x))) → C(b(x))
G(x) → A(c(x))
G(x) → C(x)
a(c(b(a(x)))) → b(a(b(c(a(b(x))))))
f(f(a(x))) → g(x)
g(b(x)) → b(g(x))
c(x) → f(f(x))
c(a(c(x))) → c(b(a(c(b(x)))))
g(x) → a(c(x))
A(c(b(a(x)))) → C(a(b(x)))
C(x) → F(f(x))
F(f(a(x))) → G(x)
G(b(x)) → G(x)
G(x) → A(c(x))
G(x) → C(x)
C(x) → F(x)
C(a(c(x))) → C(b(a(c(b(x)))))
C(a(c(x))) → A(c(b(x)))
C(a(c(x))) → C(b(x))
a(c(b(a(x)))) → b(a(b(c(a(b(x))))))
f(f(a(x))) → g(x)
g(b(x)) → b(g(x))
c(x) → f(f(x))
c(a(c(x))) → c(b(a(c(b(x)))))
g(x) → a(c(x))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
G(x) → A(c(x))
G(x) → C(x)
C(a(c(x))) → A(c(b(x)))
C(a(c(x))) → C(b(x))
POL(A(x1)) = x1
POL(C(x1)) = x1
POL(F(x1)) = x1
POL(G(x1)) = 1 + x1
POL(a(x1)) = 1 + x1
POL(b(x1)) = x1
POL(c(x1)) = x1
POL(f(x1)) = x1
POL(g(x1)) = 1 + x1
f(f(a(x))) → g(x)
c(x) → f(f(x))
c(a(c(x))) → c(b(a(c(b(x)))))
a(c(b(a(x)))) → b(a(b(c(a(b(x))))))
g(b(x)) → b(g(x))
g(x) → a(c(x))
A(c(b(a(x)))) → C(a(b(x)))
C(x) → F(f(x))
F(f(a(x))) → G(x)
G(b(x)) → G(x)
C(x) → F(x)
C(a(c(x))) → C(b(a(c(b(x)))))
a(c(b(a(x)))) → b(a(b(c(a(b(x))))))
f(f(a(x))) → g(x)
g(b(x)) → b(g(x))
c(x) → f(f(x))
c(a(c(x))) → c(b(a(c(b(x)))))
g(x) → a(c(x))
G(b(x)) → G(x)
a(c(b(a(x)))) → b(a(b(c(a(b(x))))))
f(f(a(x))) → g(x)
g(b(x)) → b(g(x))
c(x) → f(f(x))
c(a(c(x))) → c(b(a(c(b(x)))))
g(x) → a(c(x))
G(b(x)) → G(x)
From the DPs we obtained the following set of size-change graphs: