NO
0 QTRS
↳1 NonTerminationProof (⇒, 3411 ms)
↳2 NO
B(x) → W(M(M(M(V(x)))))
M(x) → x
M(V(a(x))) → V(Xa(x))
M(V(b(x))) → V(Xb(x))
M(V(c(x))) → V(Xc(x))
M(V(d(x))) → V(Xd(x))
M(V(f(x))) → V(Xf(x))
M(V(g(x))) → V(Xg(x))
Xa(a(x)) → a(Xa(x))
Xa(b(x)) → b(Xa(x))
Xa(c(x)) → c(Xa(x))
Xa(d(x)) → d(Xa(x))
Xa(f(x)) → f(Xa(x))
Xa(g(x)) → g(Xa(x))
Xb(a(x)) → a(Xb(x))
Xb(b(x)) → b(Xb(x))
Xb(c(x)) → c(Xb(x))
Xb(d(x)) → d(Xb(x))
Xb(f(x)) → f(Xb(x))
Xb(g(x)) → g(Xb(x))
Xc(a(x)) → a(Xc(x))
Xc(b(x)) → b(Xc(x))
Xc(c(x)) → c(Xc(x))
Xc(d(x)) → d(Xc(x))
Xc(f(x)) → f(Xc(x))
Xc(g(x)) → g(Xc(x))
Xd(a(x)) → a(Xd(x))
Xd(b(x)) → b(Xd(x))
Xd(c(x)) → c(Xd(x))
Xd(d(x)) → d(Xd(x))
Xd(f(x)) → f(Xd(x))
Xd(g(x)) → g(Xd(x))
Xf(a(x)) → a(Xf(x))
Xf(b(x)) → b(Xf(x))
Xf(c(x)) → c(Xf(x))
Xf(d(x)) → d(Xf(x))
Xf(f(x)) → f(Xf(x))
Xf(g(x)) → g(Xf(x))
Xg(a(x)) → a(Xg(x))
Xg(b(x)) → b(Xg(x))
Xg(c(x)) → c(Xg(x))
Xg(d(x)) → d(Xg(x))
Xg(f(x)) → f(Xg(x))
Xg(g(x)) → g(Xg(x))
Xa(E(x)) → a(E(x))
Xb(E(x)) → b(E(x))
Xc(E(x)) → c(E(x))
Xd(E(x)) → d(E(x))
Xf(E(x)) → f(E(x))
Xg(E(x)) → g(E(x))
W(V(x)) → R(L(x))
L(a(x)) → Ya(L(x))
L(b(x)) → Yb(L(x))
L(c(x)) → Yc(L(x))
L(d(x)) → Yd(L(x))
L(f(x)) → Yf(L(x))
L(g(x)) → Yg(L(x))
L(a(b(c(a(x))))) → D(b(a(c(b(a(b(x)))))))
L(a(d(x))) → D(c(x))
L(a(f(f(x)))) → D(g(x))
L(b(g(x))) → D(g(b(x)))
L(c(x)) → D(f(f(x)))
L(c(a(c(x)))) → D(b(c(a(b(c(x))))))
L(c(d(x))) → D(a(a(x)))
L(g(x)) → D(c(a(x)))
L(g(x)) → D(d(d(d(d(x)))))
Ya(D(x)) → D(a(x))
Yb(D(x)) → D(b(x))
Yc(D(x)) → D(c(x))
Yd(D(x)) → D(d(x))
Yf(D(x)) → D(f(x))
Yg(D(x)) → D(g(x))
R(D(x)) → B(x)
W V b g E → W V b g E
W V b g E → W M V b g E
by OverlapClosure OC 2W V b g → W M V b Xg
by OverlapClosure OC 2W V b g → W M V Xg b
by OverlapClosure OC 3W V b g → B g b
by OverlapClosure OC 3W V b g → R D g b
by OverlapClosure OC 2W V → R L
by original rule (OC 1)L b g → D g b
by original rule (OC 1)R D → B
by original rule (OC 1)B g → W M V Xg
by OverlapClosure OC 2B → W M M V
by OverlapClosure OC 3B → W M M M V
by original rule (OC 1)M →
by original rule (OC 1)M V g → V Xg
by original rule (OC 1)Xg b → b Xg
by original rule (OC 1)Xg E → g E
by original rule (OC 1)
M →
by original rule (OC 1)