NO Termination w.r.t. Q proof of /home/cern_httpd/provide/research/cycsrs/tpdb/TPDB-d9b80194f163/SRS_Standard/Secret_05_SRS/torpa4-shift.srs

(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

B(x) → W(M(M(M(V(x)))))
M(x) → x
M(V(a(x))) → V(Xa(x))
M(V(b(x))) → V(Xb(x))
M(V(c(x))) → V(Xc(x))
M(V(d(x))) → V(Xd(x))
M(V(f(x))) → V(Xf(x))
M(V(g(x))) → V(Xg(x))
Xa(a(x)) → a(Xa(x))
Xa(b(x)) → b(Xa(x))
Xa(c(x)) → c(Xa(x))
Xa(d(x)) → d(Xa(x))
Xa(f(x)) → f(Xa(x))
Xa(g(x)) → g(Xa(x))
Xb(a(x)) → a(Xb(x))
Xb(b(x)) → b(Xb(x))
Xb(c(x)) → c(Xb(x))
Xb(d(x)) → d(Xb(x))
Xb(f(x)) → f(Xb(x))
Xb(g(x)) → g(Xb(x))
Xc(a(x)) → a(Xc(x))
Xc(b(x)) → b(Xc(x))
Xc(c(x)) → c(Xc(x))
Xc(d(x)) → d(Xc(x))
Xc(f(x)) → f(Xc(x))
Xc(g(x)) → g(Xc(x))
Xd(a(x)) → a(Xd(x))
Xd(b(x)) → b(Xd(x))
Xd(c(x)) → c(Xd(x))
Xd(d(x)) → d(Xd(x))
Xd(f(x)) → f(Xd(x))
Xd(g(x)) → g(Xd(x))
Xf(a(x)) → a(Xf(x))
Xf(b(x)) → b(Xf(x))
Xf(c(x)) → c(Xf(x))
Xf(d(x)) → d(Xf(x))
Xf(f(x)) → f(Xf(x))
Xf(g(x)) → g(Xf(x))
Xg(a(x)) → a(Xg(x))
Xg(b(x)) → b(Xg(x))
Xg(c(x)) → c(Xg(x))
Xg(d(x)) → d(Xg(x))
Xg(f(x)) → f(Xg(x))
Xg(g(x)) → g(Xg(x))
Xa(E(x)) → a(E(x))
Xb(E(x)) → b(E(x))
Xc(E(x)) → c(E(x))
Xd(E(x)) → d(E(x))
Xf(E(x)) → f(E(x))
Xg(E(x)) → g(E(x))
W(V(x)) → R(L(x))
L(a(x)) → Ya(L(x))
L(b(x)) → Yb(L(x))
L(c(x)) → Yc(L(x))
L(d(x)) → Yd(L(x))
L(f(x)) → Yf(L(x))
L(g(x)) → Yg(L(x))
L(a(b(c(a(x))))) → D(b(a(c(b(a(b(x)))))))
L(a(d(x))) → D(c(x))
L(a(f(f(x)))) → D(g(x))
L(b(g(x))) → D(g(b(x)))
L(c(x)) → D(f(f(x)))
L(c(a(c(x)))) → D(b(c(a(b(c(x))))))
L(c(d(x))) → D(a(a(x)))
L(g(x)) → D(c(a(x)))
L(g(x)) → D(d(d(d(d(x)))))
Ya(D(x)) → D(a(x))
Yb(D(x)) → D(b(x))
Yc(D(x)) → D(c(x))
Yd(D(x)) → D(d(x))
Yf(D(x)) → D(f(x))
Yg(D(x)) → D(g(x))
R(D(x)) → B(x)

Q is empty.

(1) NonTerminationProof (COMPLETE transformation)

We used the non-termination processor [OPPELT08] to show that the SRS problem is infinite.

Found the self-embedding DerivationStructure:
W V b g EW V b g E

W V b g EW V b g E
by OverlapClosure OC 3
W V b g EW M V b g E
by OverlapClosure OC 2
W V b gW M V b Xg
by OverlapClosure OC 2
W V b gW M V Xg b
by OverlapClosure OC 3
W V b gB g b
by OverlapClosure OC 3
W V b gR D g b
by OverlapClosure OC 2
W VR L
by original rule (OC 1)
L b gD g b
by original rule (OC 1)
R DB
by original rule (OC 1)
B gW M V Xg
by OverlapClosure OC 2
BW M M V
by OverlapClosure OC 3
BW M M M V
by original rule (OC 1)
M
by original rule (OC 1)
M V gV Xg
by original rule (OC 1)
Xg bb Xg
by original rule (OC 1)
Xg Eg E
by original rule (OC 1)
M
by original rule (OC 1)

(2) NO